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ABSTRACT

The objective of this study is to develop micromechanical models for predicting the
stiffness and strength properties of textile composite materials. Micromechanical analysis
of textile composites is possible due to the presence of a repeating unit-cell or representative
volume element. The unit-cell is assumed to span the material continuously in all three
dimensions. On the microscale—comparable to the scale of the unit-cell—the composite is
heterogeneous due to the presence of the reinforcing yarn and the matrix. However, on the
macroscale—comparable to the structural scale—the composite is assumed to be
homogeneous and orthotropic. The homogeneous composite properties are then predicted
from the constituent material properties and the yarn geometry.

The highlight of this study is a systematic analysis of issues involved in the finite
element based micromechanics of textile composites. The unit-cell is discretized with
three-dimensional finite elements, and periodic boundary conditions are imposed between
opposite end-faces of the unit-cell. Six linearly independent deformations are applied to the
unit-cell. From the forces acting on the unit-cell for each of the six deformations, the
composite stiffness matrix is obtained. A similar procedure is followed to determine the
composite coefficients of thermal expansion. The numerical procedure was tested by
applying it for simple examples, for which the results are known. The numerical results were
also compared with existing models for textile composites. In both cases, the results compare
very favorably. The finite element procedure is extended to compute the thermal residual
microstresses and to estimate the initial failure envelope for the textile composite.

An independent finite element micromechanical analysis, analogous to the above, is
presented for thin textile composite structures with few unit-cells in the thickness direction.
In that case, the composite is modeled as a homogeneous plate to predict the plate stiffness
coefficients and plate coefficients of thermal expansion. It was shown the plate properties
could not be predicted from the corresponding three-dimensional properties.

In addition, an approximate analytical procedure is presented to estimate the
composite thermo-elastic constants. The procedure called the Selective Averaging Method
is based on a judicious combination of stiffness and compliance averaging. The method is
fast and easy to implement, and suitable for parametric studies.
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CHAPTER 1
INTRODUCTION

1.1 Background

The increasing demand for lightweight yet strong and stiff structures has lead to the

development of advanced fiber reinforced composites. These materials are not only used in

the aerospace industry but also in a variety of commercial applications like automobile,

marine and biomedical applications. Traditionally fibrous composites are manufactured by

laminating several layers of unidirectional fiber tapes (Fig. 1) pre-impregnated with matrix

material. The effective properties of the composite can be controlled by changing several

parameters like the fiber orientation in a layer, stacking sequence, fiber and matrix material

properties and fiber volume fraction. However, the manufacture of fibrous laminated

composites from prepregs is labor intensive. Besides, laminated composites lack

through-the-thickness reinforcement, and hence have poor interlaminar strength and

fracture toughness.
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Figure 1.  Stacking of layers (plies) for fibrous laminated composite.
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Figure 2. Examples of woven, braided and knitted textile preforms. (Source:
Chou and Ko, 1989)

Recent developments in textile manufacturing processes show some promise in
overcoming the above limitations. Textile processes such as weaving, braiding and knitting
can turn large volumes of yarn into dry preforms at a faster rate, thus reducing costs and cycle
time. The dry preforms (Fig. 2) are impregnated with appropriate matrix material and cured
in a mold using processes such as Resin Transfer Molding (RTM). Two-dimensional woven
and braided mats offer increased through the thickness properties due to yarn interlacing.
The mats may be stitched using Kevlar or glass threads to provide additional reinforcement
along the thickness direction (Sharma and Sankar, 1995). Three-dimensional woven and
braided composites provide multidirectional reinforcement, thus directly enhancing the

strength and stiffness in the thickness direction. Unlike laminated structures



three-dimensional composites do not possess the weak plane of delamination, thus giving
increased impact resistance and fracture toughness. Textile manufacturing processes in
conjunction with resin transfer molding are also suitable for the production of intricate
structural forms at a reduced cycle time. This allows complex shaped structures to be
fabricated as an integral unit, thus eliminating the use of joints and fasteners.

With the advancements in aforementioned technologies there is a need to develop
scientific methods of predicting the performance of the composites made using the above
processes. There are numerous variables involved in textile processes besides the choice of
the fiber and matrix materials. This, for example, includes (a) the number of filaments in the
yarn specified by the yarn linear density and (b) the yarn architecture (description of the yarn
geometry) determined by the type of weaving or braiding processes. Thus, there is a need
for analytical/numerical models to study the effect of these variables on the textile composite
behavior.

Ideally a structural engineer would like to model textile composites as a
homogeneous anisotropic material—preferably orthotropic—so that the structural
computations can be simplified, and also the existing computer codes can be used in the
design. This would require the prediction of the effective (macroscopic) properties of the
composites from the constituent material (microscopic) characteristics such as yarn and
matrix properties, yarn-matrix interface characteristics and the yarn architecture (Fig. 3).
This is possible if we assume that there is a representative volume element (RVE) or an
unit-cell that repeats its self throughout the volume of the composite, which is true in the case
of textile composites. The unit-cell can be considered as the smallest possible building block
for the textile composite, such that the composite can be created by assembling the unit-cell
in all three dimensions (Fig. 4). The prediction of the effective macroscopic properties from
the constituent material characteristics is one of the aspects of the science known as

micromechanics. The effective properties include thermo-mechanical properties like



stiffness, strength and coefficients of thermal expansion as well as thermal conductivities,

electromagnetic and other transport properties.
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Figure 3. Essence of micromechanics.
(a) composite (microscale) showing plain-weave pattern
(b) homogeneous and orthotropic composite (macroscale).
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Figure 4. Unit-cell for a textile composite.




Most of the early work to determine the properties of heterogeneous materials was
restricted to particulate (spherical) inclusions which were assumed to be isotropic. For
example, Hashin (1962) derived expressions for the bounds for the elastic moduli of
heterogeneous materials using variational theory. A review of analytical methods for
predicting the effective properties of particulate composites was presented by Christensen
(1990). However, the complex geometry of the textile preforms makes such precise
analytical modeling difficuit.

The current literature dealing with micromechanical analyses for textile composites
can be broadly classified into three categories: mechanics of materials type models, energy
based approach, and finite element analysis of the unit-cell. All of the above models
recognize that there is a unit-cell in the composite material, and they attempt to model the
material as a homogeneous orthotropic material. In the mechanics of materials type models,
the yarns are approximated as simple structural elements, e. g., beams, plates, laminates etc.,
and their deformation behavior is assumed to be governed by the corresponding structural
constitutive relations. The kinematics is also simplified to a great extent, and a relation
between the overall deformation of the unit-cell and the average forces are derived. The
energy approach is similar to the previous one, except that the strain energy in the unit-cell
is evaluated based on some assumed displacement field, which is usually an
oversimplification of exact displacements. The elastic constants are derived by equating the
strain energy in the approximate model to that in an idealized homogeneous composite.
Most energy based approaches provide bounds for the homogeneous properties, and can be
used as a check for experimental observations or other theoretical models. The third method
is the rigorous micromechanical analysis of the unit-cell, which often requires the use of
numerical methods such as the finite element method, and also uses the exact
three-dimensional constitutive relations for the yarn and the matrix material.

Ishikawa and Chou (1982a, 1982b, 1983a, 1983b, 1983c) proposed three analytical

models for thermo-elastic properties of woven fabric composites—the mosaic model, the



fiber undulation model and bridging model. The mosaic model treats the composite as an
assembly of crossply laminates, and then uses lamination theory to predict the composite
properties. The fiber undulation model in addition takes into account the effect of yarn
continuity in the loading direction. The bridging model was specifically developed to
estimate the elastic behavior of satin weaves. This model simulates the effect of load
distribution and load transfer between the yarns. The above three models were developed
for two-dimensional fabric composites. These models were then extended by Yang et al.
(1986) in the fiber inclination model to predict the elastic properties of three-dimensional
textile composites. The fiber inclination model was used to determine the elastic properties
of three-dimensional angle-interlock composites and braided composites by Whitney and
Chou (1989) and Ma et al. (1986) respectively. The results were compared with test data,
and parametric analyses were performed to study the effect of changing geometric
parameters. Crane and Camponeschi (1986) presented an analytical model based on classical
lamination theory to predict the extensional stiffnesses for multi-directional braided
composites. Naik (1994) used a stiffness averaging technique to predict woven and braided
composite properties (explained in Chapter 3).

Numerical modeling of the unit-cell is popular due to its ability to capture the effects
of complicated yarn architectures. For instance, Yoshino and Ohtsuka (1982) performed a
two-dimensional finite element analysis using plane strain elements to predict the stress
distribution within a plain-weave fabric. Dasgupta et al. (1990) and Whitcomb (1991)
analyzed the unit-cell of a plain-weave composite using three-dimensional finite elements
to determine the effect of the yarn geometry and yarn volume fraction on the composite
thermo-elastic constants. Foye (1993) used inhomogeneous elements called replacement
elements to model the unit-cell. His model can be used to predict both composite stiffness
and strength properties. Cox et al. (1994) presented a three-dimensional finite element model
using two types of elements. The yarns are modeled as two-node line elements and the rest

of the medium as eight-node solid elements. The model was used to predict failure



mechanisms in angle and orthogonal interlock woven composites. Raju et al. (1990)
compiled a review of available analytical and numerical methods for modeling textile

composites.

1.2 Scope of Study

The analytical models explained above are approximate—they make use of
assumptions similar to that in classical plate theory, and the yarn geometry is greatly
simplified. Further, these models do not consider periodic boundary conditions (see Section
2.1.1) for continuity of displacements and tractions on opposite faces of the unit-cell. Most
of the existing numerical models are for specific yarn geometries such as simple weave
architectures. Therefore there is a need for more general models to predict the mechanical
properties for a textile composite, particularly for composites with complex woven and
braided geometries. The present study illustrates two such methods. The first method
involves rigorous finite element analysis of the unit-cell, which imposes exact displacement
and traction boundary conditions on the end-faces of the unit-cell. The second is an
approximate analysis in which the unit-cell is discretized into a number of elements. The
effective (macroscale) stiffness for the composite is computed by a combination of stiffness
and compliance averaging of the element stiffness coefficients. The advantage of the
proposed methods is their generality—they are applicable to any textile geometry provided
that there exists a repeatable pattern (which defines the unit-cell). Both the methods can
compute the effective elastic constants and effective coefficients of thermal expansion for
the homogenous composite.

The analysis for the elastic constants of the textile composite continuum assumes that
the unit-cell is repeatable in all three dimensions. This assumption will not be valid for thin
textile composite structures, where there will be a only a few unit-cells in the thickness

direction. For such applications, an alternate micromechanical analysis is proposed. The



unit-cell is modeled as a plate (Fig. 5) and the corresponding plate stiffness coefficients and

plate coefficients of thermal expansion are predicted.

Figure 5. Textile composite plate showing unit-cell.

Chapter 2 explains the finite element procedure to compute the macroscale
thermo-elastic constants. The procedure is detailed for a thick textile composite in which
there are sufficient number of unit-cells in the thickness direction. The procedure is then
extended to a thin composite. The thin composite is first modeled as a beam and a
two-dimensional analysis is presented to compute the beam thermo-elastic coefficients. A
similar three-dimensional analysis is also illustrated in which the thin composite is modeled
as a plate. An analytical procedure called the Selective Averaging Method (SAM) is
presented in Chapter 3 to estimate the macroscale thermo-elastic constants. This procedure
utilizes a judicious combination of stiffness and compliance averaging to compute the
composite properties. Again for a thin textile composite the plate stiffness coefficients and

plate coefficients of thermal expansion may be computed.



In Chapter 4 the microstresses computed using the finite element analysis, are used
to construct an initial failure envelope for a textile composite modeled as homogeneous
continuum. An independent procedure using plate theory is presented to predict the failure
envelope for a thin textile composite. Since the composite is generally fabricated at a
temperature greater than room temperature, thermal residual microstresses are developed
due to the mismatch in the coefficients of thermal expansion for the constituent materials.
A method to predict these thermal microstresses is illustrated. Chapter 5 deals with the issues
pertaining to finite element modeling of the unit-cell. Due to the complex yarn architectures,
traditional finite element modeling becomes exceedingly difficult. Various alternative
means of finite element modeling the unit-cell are discussed with suitable two-dimensional
examples. Finally Chapter 6 summarizes the work done in this study. The limitations of the

work are addressed and suggestions are given for future work in this area.



CHAPTER 2
FINITE ELEMENT MODELS FOR THERMO-ELASTIC CONSTANTS

In this chapter, we demonstrate finite element based micromechanical models to
predict the effective stiffness properties and effective coefficients of thermal expansion
(CTE’s) for a textile composite. The macroscale properties of the composite are determined
at a scale much larger than the dimensions of the unit-cell, but comparable to the dimensions
of the structural component. The average stresses at a point at the structural scale will be
called the macroscale stresses or macrostresses. The actual stresses at a point at the
continuum level will be called the microscale stresses or microstresses. To distinguish the
macroscale deformations and stresses from their microscale counterparts—a superscript

“M” will be used to denote the macroscale deformations and stresses.

2.1 Unit-Cell Analysis for Three-Dimensional Elastic Constants

In this section a procedure to determine the three-dimensional elastic constants for
a textile composite material is described. Consider a rectangular hexahedron as the unit-cell
of the three-dimensional textile composite. The edges of the unit-cell are assumed to be
parallel to the coordinate axes x;, x; and x3, with unit-cells repeating in all three directions.
The length of the unit-cell in the x; direction is deﬁned as ;. On the macroscale the composite
is assumed to be homogeneous and orthotropic and the composite behavior is characterized

by the following constitutive relation :
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where {oM} and {¢M} are the macrostresses and macrostrains, respectively; {a°} and [C]
are the macroscale CTE’s and orthotropic elasticity matrix to be determined; ATM is a
uniform temperature difference throughout the unit-cell. The macroscale elasticity matrix
is of the form:

[Cli Cin Ci3 Gy G5 Gy

Cyp Cp Cy Gy Cy
Cy3 C3y C35 Csg

[C] - symm. Cy Cys Cy )
Css  Cse
Cés

The unit-cell analysis assumes that the material is homogeneous and orthotropic on the
macroscale. The material, therefore, is subject to a uniform state of strain in the macroscopic
sense. The macrostresses required to create such a state of strain are computed from the finite
element model of the unit-cell. In the microscale, all unit-cells have identical stress and strain
fields. Continuity of microstresses across the unit-cell then requires that tractions be equal
and opposite at corresponding points on opposite faces of the unit-cell. Since the
displacement gradients are constant for a homogeneous deformation, the displacements at

corresponding points on opposite faces of the unit-cell differ only by a constant.



12

2.1.1 Periodic Boundary Conditions

The periodic boundary conditions (BC’s) consist of the periodic displacement
boundary conditions which ensure the compatibility of displacements on opposite faces of
the unit-cell, and the periodic traction boundary conditions to enforce the continuity of

stresses. A macroscopically homogeneous deformation can be represented as

ut = Hyx; ij=1,2,3 (3)

4
where Hj; are the displacement gradients. Then the periodic displacement boundary
conditions to be imposed on the faces x;=0 and x;=L; are
ufLyxyx3) — uf0,xyx3) = HylL,
ux;Lyxs) = ufx) 0,x3) = Hpl,y “4)

uixyxyL3) — ufx;x,0) = Hply

The traction boundary conditions to be imposed on the faces x;=0 and x;=L; are
Fi(Ll’xZ, X3) = - FI(O’ x2, X3)
Fix) Ly, x3) = — Fi(x,0,x3) (5)
Fl(xl’xZ,L3) = - Fi(xl,.xé, 0)

The periodic displacement and traction BC’s (for atwo-dimensional problem) to be imposed
for the deformation given by €77 =1/L; and £5,=y;2=0 are shown in Fig. 6.

The above periodic BC’s are imposed in the finite element model either by using
multi-point constraint elements or by incorporating transformation equations to eliminate
the constrained displacements (Cook et al., 1989). These two methods to impose the periodic
BC’s are discussed in Section 5.1.3. Both the methods require a finite element model with

corresponding nodes on opposite faces of the unit-cell.
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Figure 6. Two-dimensional example illustrating the periodic boundary
conditions for the the deformation €;;=1/L; and £22=y;,=0.

2.1.2 Determination of Three-Dimensional Elastic Constants and CTE’s

The unit-cell is discretized with three-dimensional finite elements such that opposite
faces of the unit-cell have identical nodes. Periodic displacement and traction boundary
conditions are enforced between the corresponding nodes. The periodic displacement BC’s
are imposed such that only.one of the macrostrain components is non-zero; and the uniform
temperature difference ATM is set to zero. Then, the difference in displacements between
corresponding points on opposite faces of the unit-cell will be equal to that in a homogenous
continuum subject to the same deformation. The average stresses (macrostresses) required
to create such a deformation are obtained from the finite element results. Substituting the
macrostresses and macrostrains in the composite constitutive relation (Eqn. 1) the stiffness
coefficients in the column corresponding to the non-zero strain can be evaluated. This

procedure is repeated for other macrostrain components (keeping the temperature difference
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zero) to obtain the entire stiffness matrix [C]. The orthotropic elastic constants of the
composite material can be easily determined by inverting the stiffness matrix, and
comparing the compliance coefficients with that of an orthotropic material.

To compute the six CTE’s, a finite temperature change 7, is applied to all the
elements in the unit-cell; and periodic displacement BC’s are imposed such that all the
macrostrain components are zero. Then the composite constitutive relation Eqn. (1) will

reduce to
(o) = -[cle) T, ©)

The macrostresses for such a deformation are computed as described below. Knowing the

stiffness matrix [C], the composite CTE’s are found as
= 1 -1[ M
(o) = - 1c17'{o") @

Table 1 presents the non-zero displacement BC’s imposed on the unit-cell to obtain [C] and

the CTE’s {a‘}.

Table 1.  Non-zero displacement BC’s to obtain 3-D elastic constants and CTE’s.

stiffness coefficients to be obtained non-zero displacement BC’s
first column of [C] (e;M = 1) ur(Ly, x2, x3) —ug(0, x2, x3) = Ly
second column of [C] (2™ = 1) wp(xg, Ly, x3) —up(x1, 0, x3) = Ly
third column of [C] (e33M=1) us(xg, xp, L3) — uz3(x1, x2, 0) = L3
fourth column of [C] (y23M = I) wy(xg, x3, L3) — up(x;, x3, 0) = L3/2

uz(xy, Lp, x3) — u3(xj, 0, x3) = Lr/2

fifth column of [C] (y;3M = I) ui(xy, x2, L3) — uj(xj, x2, 0) = L3/2

uz(Ly, x2, x3) — u3(0, x3, x3) = L1/2

sixth column of [C] (y;2M = 1) ur(x1, Ly, x3) — uy(xj, 0, x3) = Lp/2
wy(Ly, x3, x3) —up(0, x3, x3) = L1 /2
CTE’S(ATM= I AT =1
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The macrostresses for a given deformation state can be found by the following two

methods. In the first method, the macrostresses are obtained by averaging the nodal forces

on each face of the unit cell. For example, the macroscale 011”1 can be obtained as

1
of = L,L, D F(Ly 3y x) ®)
n

" where F (1") is the nodal force in the x; direction at the nth node, and Z denotes summation

n

over all nodes on the face x;=L;. Alternatively, the macrostresses can be computed by

volume-averaging the corresponding microstress component in the unit-cell. Then the

macrostress component a’l"{ is obtained as
1
off = T/I o11(%y,2)dV ®
W

where V is the volume of the unit-cell. The microstresses are computed at the quadrature

points, and numerically integrated over the volume in each element of the unit-cell.

2.1.3 Results and Discussion for 3-D Elastic Constants and CTE’s

The above procedure was demonstrated for the following material systems:

Example 1.  isotropic material

Example 2.  bimaterial medium—both materials are assumed isotropic (Fig. 7)

Example 3.  unidirectional composite with identical Poisson ratios for fiber and matrix—
fiber and matrix materials are isotropic (Fig. 8)

Example 4.  unidirectional composite with different Poisson ratios for fiber and matrix—
fiber and matrix materials are isotropic

Example 5.  plain-weave textile composite (Fig. 9)—yarn geometry and properties
obtained from Dasgupta et al. (1990)

Example 6.  plain-weave textile composite—yarn geometry and properties obtained from

Naik (1994)
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Example 7. 5-harness satin weave (Fig. 10)—yarn geometry and properties obtained
from Naik (1994) |

For the textile composite examples (examples 5-7), the yarn is assumed to be transversely

isotropic and the matrix material is assumed isotropic. The constituent material properties

for the examples are listed in Table 2.

Table 2.  Properties of constituent materials for examples 1-7.

Example 1 E = 10 GPa, v=0.3, a=10x10%/°C
unit-cell size: 0.500x0.500x0.256 mm

Example 2 layer 1 (E—glass): E;=70 GPa, v;=0.200, a;= 5x107/°C, V;=0.5
layer 2 (epoxy): E»=3.50 GPa, v,=0.350, ap= 60x10-6/°C, V»=0.5
unit-cell size: 0.500x0.500x0.256 mm

Example 3 fiber: Ef=100 GPa, v/=0.300, ag= 10x] 0-%/0C, V=0.6
matrix: E,=10 GPa, v,;,=0.300, a,,= 100x10-6 /°C
unit-cell size: 10x10x10 um

Example 4 fiber (E—glass): E=70 GPa, v=0.200, af= 5x1 0-6/°C, Vr=0.6
matrix (epoxy): En=3.50 GPa, v,,=0.350, apm= 60x10-6 /°C
unit-cell size: 10x10x10 um

Example 5 yarn (glass-epoxy):

E; =58.61 GPa, Er=14.49 GPa, Gy7=5.38 GPa, v;7=0.250
vr1=0.247, a;,=6.15x10-%/°C, ar=22.64x106/°C, V=0.26

matrix (epoxy):
E=3.45 GPa, v=0.37, a=69x10-/°C

unit-cell size: 1.680x1.680x0.228 mm

Examples 6, 7 yarn (graphite-epoxy):

E;=144.80 GPa, Er=11.73 GPa, G;7=5.52 GPa, vi7=0.230

vr7=0.300, ay =—0.324x1076 /°C, ar=14.00x10-5/°C, Vi=0.64

matrix (epoxy):

E=3.45 GPa, v=0.35, a=40x1076/°C

unit-cell size: 2.822x2.822x0.2557 mm (Exampie 6)
7.055x7.055x0.2557 mm (Example 7)

V; stands for the volume fraction of the constituent material



(a) ’ (b)

Figure 7. Bimaterial example.
(a) bimaterial medium; (b) unit-cell.

preti [NJ

(a) (b)

Figure 8.  Unidirectional composite example.
(a) composite; (b) unit-cell.
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Yarn pattern in a plain weave preform. (unit-cell boundary in dotted

lines)

Figure 9.

Figure 10. Yarn pattern in a 5-harness satin weave preform. (unit-cell boundary
in dotted lines)
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A 3-D finite element code called uTEy—10 (pronounced as microtech) was written
and implemented for the seven examples to compute the homogeneous elastic constants and
CTE’s. The user manual for uTEy—10is provided in Appendix-A. The unit-cell was assumed
to be a rectangular hexahedron with edges along the x-, y- and z- axes. The unit-cell was
divided into uniform-sized eight-node brick elements as shown in Figure 11. The number
of divisions along the x-, y- and z- axes are specified by the user. The elements were in
general, inhomogeneous elements, i.e., consisted of more than one constituent material.
While computing the element stiffness matrix, the material property at the Gauss integration
points was determined, and the corresponding elasticity matrix was used to perform the
integration over the element volume (see Section 5.1.2). Thus the element stiffness matrix
was obtained as the averaged stiffness of the different materials in the element. Periodic
displacement and traction boundary conditions were imposed between corresponding nodes
on opposite faces of the unit-cell. The numerical procedure to compute the element stiffness
matrix and to impose periodic BC’s are discussed in Chapter 5. The skyline solver (Bathe,
1982) was used to solve for the nodal displacements. The computed elastic constants for the

seven examples are listed in Tables 3-5.

(b)

Figure 11. 3-D finite element mesh to compute elastic constants.
(a) unit-cell; (b) eight-node brick element.
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The uTEx-10 code was first checked by computing the elastic constants for an
isotropic medium (Table 3). Then the code was implemented for a bimaterial medium. The
bimaterial medium consisted of two different layers of equal thickness in the xy-plane
alternating in the z-direction (Fig. 7). The effective Young’s moduli, Poisson ratios and
CTE’s of the bimaterial medium were derived exactly, as described below. The constitutive

relation (considering only the normal stresses) for each layer is defined as:

: TP R :
oy 11 Ciz Cis | [eks

: i i i i .
Oyp = 12 C22 Coz |4 €y i =12 (10)
i i i i i
0z 13 L23 Gz | 8z

where the superscript refers to the layer number. To derive Cy;, C;2 and Cy 3 for the bimaterial
medium, &, ¥ was assumed as one; and &, and ¢,¥ were assumed to be zero. The
assumption of &,,™ = 0 and the fact that the layers are of equal thickness imply that &,/ =

—&,,2. The following constraints were, in addition, imposed across the bimaterial interface

el =2, =M
1 _ 2 — M
Eyy = Eyy = Eyy (11)
1 _ 2 . M
Oz = Oz = Oz

From the above interfacial constraints and Eqn. (10), the stresses in each layer were
computed. The stresses in the layers were volume-averaged to yield the corresponding
macrostresses, ie., O™, 0,y and 0, M. Since &M was equal to unity, the computed
macrostresses were identical to the stiffness coefficients in the first column, namely, C;;, C2
and Cj3. A similar procedure was followed to find the remaining stiffness coefficients and
CTE’s for the bimaterial medium. The inplane shear modulus of the bimaterial medium was
computed as Gyy= (G;+ G2 )/2 knowing that the shear strain was uniform in both layers. The

2G,G,

isostress assumption was used to derive the transverse shear modulus as G,; = reREwek
1 2
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It was found that uTEy—10 results were identical to the elasticity results for the bimaterial

medium (Table 3).
Table 3.  Continuum properties for examples 1 and 2 using finite elements.
EE, E, Gz, Gy Vxzs Yoy | Sy a;©
(GPa) | (GPa) | Oz | (GPa) | " X X
(GPa) 10-6/°C | 10-6/°C
Example 1 | uTEx-10 10 10 3.85 | 3.85 |0.300 |0.300 10 10
(isotropic (FEA)
medium) exact 10 10 3.85 3.85 10.300 {0.300 10 10
solution
Example2 | uTEx-10 | 36.79 | 9.79 | 2.48 | 15.23 |0.312 {0.208 | &.19 59.60
(bimaterial (FEA)
medium) exact 36.79 | 9.79 | 2.48 | 15.23 |0.312]0.208 | 8.19 59.60
solution
Table 4.  Continuum properties for examples 3 and 4 using finite elements.
E Er Grr Grr vir vrr ay, ar
(GPa) | (Gpa) | (GPa) | (GPa) x106 | x10°6 ;oC
/°C
il UTEx-10 | 63.55 | 36.48 | 12,93 9.94 0.300 | 0.232 15.74 40.79
Example 3 (FEA)
 (oni ruleof | 64 | 3455 | 1126 | 1320 | 0300 [ 0300 | 15.63 55.11
directional .
. mixt./
composite) Halpin—
Tsai eqns.
uTEx-10 | 43.12 | 18.15 5.59 392 | 0242 | 0.222 7.40 25.44
Example 4 (FEA)
. (m.li rule of 4340 | 1479 | 445 591 0.260 | 0.252 6.77 34.24
directional mixt/
composite) Halpi;l—
Tsai eqns.

Table 4 presents the elastic constants and CTE’s for the two unidirectional composite

examples. The unidirectional composite unit-cell is shown in Fig. 8. The unidirectional
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composite properties were compared with available analytical solutions. The rule of
mixtures formulae were used to predict E7, and v, ; the Halpin-Tsai equations (Halpin and
Tsai, 1969) for E1, Gy and vy and Schapery’s expressions (Agarwal and Broutman, 1990)

for the thermal coefficients a7, and ar. To compare Grr, transverse isotropy was assumed in

Er

———=—— However, the finite element results show that
2(1 + vop)

the 7-T plane and computed as

the assumption of isotropy in the transverse plane is not valid. The assumption would give
Grr as 14.81 GPa and 7.43 GPa for examples 3 and 4 i‘espectively, thus grossly
over-estimating the finite element results. The relations for E;, vy 1 and a;, are exact when

the poisson ratios are identical for the fiber and the matrix.

Table 5.  Continuum properties for examples 5, 6 and 7 using finite elements.
E;, E, E, Gz, Gy Vxzs iy | &Sy apx
(GPa) | (Gpa) | O |(GPa)| ™= x10-6/0 10-6/5C
(GPa) C
uTEx-10 | 11.81 | 6.14 | 1.84 | 2.15 | 0.408 | 0.181 | 28.36 | 79.57
Example 5 (FEA)
(plain-
Dasgupta | 14.38 | 6.25 | 1.94 | 3.94 | 0.463 | 0.167 | 22.50 | 86.00
weave)
results
Example 6 | uTEx-10 | 53.61 [ 10.88 | 441 | 472 [ 0365 | 0.128 | 1.56 | 22.71
(plain- (FEA)
weave) [ TEXCAD | 6438 | 11.49 | 5.64 | 487 | 0.396 | 0027 | 1.33 | 2071
Example 7 | uTEg-10 [ 64.51 [ 11.33 | 445 | 4.85 [ 0329 [ 0047 | 155 | 22.03
(5-harness | (FEA)
weave) [TeCAD | 66.33 | 1151 | 493 | 4.89 | 0.342 | 0034 | 1.46 | 21.24

Figures 9 and 10 illustrate the weave patterns for the plain-weave (examples 5 and
6) and the 5-harness satin weave (example 7) respectively. The properties for example 5 were
compared with Dasgupta’s results for an overall fiber volume fraction (Vy) of 0.26. The yarn

properties were not specified in Dasgupta et al. (1990). So the rule of mixtures and
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Schapery’s expressions were used to obtain the yarn properties from the given fiber and
matrix properties. The 4 TEy—10 results for examples 6 and 7 were compared with TEXCAD
—an approximate analytical method developed by Naik (1994). In both the examples the
overall fiber volume fraction was 0.64. The unit-cell was divided into 13x13x7 elements for
all three examples. The elastic constants for the three textile composite examples are
presented in Table 5. It must be noted that #TEy—10 will marginally under-predict the
stiffness moduli—since the yarn cross-section in the numerical model is approximated as a
polygon inscribed within the actual cross-sectional area. Consequently the yarn/fiber
volume fraction in the numerical model will always be less than the theoretical volume

fraction.

2.2 Stress Gradient Effects

The methods explained in Section 2.1 assume that the unit-cells exist in all the three
directions. This will be true in the case of thick textile composites. However there are many
applications in which thin composites are used. In fact in order to take advantage of the
properties of composites, the structures have to be made of thin plate like members with
stiffeners for load transfer. In such cases there will be fewer unit-cells in the thickness
direction. Thus the free surface effects will be predominant. There will be severe stress
gradients through the thickness, and they will have an influence on the apparent stiffness and
strength of the structure (Marrey and Sankar, 1993a; Sankar and Marrey; 1993a).

The following simple example will illustrate the stress gradient effects on stiffness.
Consider a layered medium consisting of alternating layers of materials of equal thickness
with Young’s moduli E; and E; respectively (Fig. 12a). Any micromechanical model would
predict that the medium can be considered as a homogeneous orthotropic material at
macroscale and also the effective Young’s modulus in the longitudinal direction is
(Ej+E3)/2, and there would not be any bending-stretching coupling in the principal material

direction. However, if we consider a bimaterial beam consisting of the same two materials
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(Fig. 12b), we will find that there is a bending-stretching coupling, and also the flexural
rigidity cannot be predicted from the Young’s modulus of the homogeneous orthotropic
medium and the total beam thickness. The bimaterial beam has properties and behavior
different from the corresponding infinite medium. This phenomenon is observed in the
transverse shear behavior also (Sankar and Marrey, 1993b). A similar behavior is also
expected in thin textile composites where there are fewer unit-cells in the thickness
directions, and the unit-cells are not subjected to a macroscopically homogeneous state of

deformation as assumed in Section 2.1.

(a) (b)

Figure 12. Example to explain stress gradient effects.
(a) Layered medium; (b) Bimaterial beam.

One method of overcoming the above difficulties in thin textile composites is to
model the composite as a plate/beam, and compute the structural stiffness properties (e.g.,
[A], [B] and [D] of the plate) directly from the unit-cell analysis instead of the continuum
stiffness properties such as Young’s modulus, shear modulus etc. In the following sections
we illustrate these concepts—first for a thin textile composite modeled as a beam (Sankar
and Marrey, 1993b; Marrey and Sankar, 1993b) and then for a textile composite plate. The

purpose of the beam model is to present the issues involved in computing the structural
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stiffness coefficients as opposed to continuum elastic constants. Further the periodic BC’s

are different from those in the continuum model.

2.3 Unit-Cell Analysis for Beam Thermo-Mechanical Coefficients

In this section, a procedure for finding the equivalent flexural stiffness properties and
thermal coefficients of a textile structural composite beam is described. The textile
composite beam is assumed to be in the xz-plane with unit-cells repeating in the x-direction.
A state of plane strain parallel to the xz-plane is assumed. On the macroscale it is assumed
that the beam is homogeneous and its behavior can be characterized by the following beam

constitutive relation :

P Ky Ky K3 834 ap
My = | Ky Ky Ky xMp — Ay iATM (12)
4 K3 Ky K33 ¥ Gy

where P, M and V are the axial force, bending moment and transverse shear force resultants,
respectively; [K] is the symmetric matrix of beam stiffness coefficients; g, ¥, x#Mand y,Mare
the midplane axial strain, curvature and transverse shear strain respectively; ap, ays and ay,
respectively, are the beam thermal expansion, thermal bending and thermal shear
coefficients. The midplane deformations are related to the midplane axial displacement u,,

transverse displacement w, and rotation y as:

ouM asz owM
M _ %% M _ M — M w
80 ax ’ X ax ’ '}’o 1/’ + ax (13)

Actually, K;;, K2, K77 and K33 are similar to the laminate stiffness coefficients A;;, By, Dy;
and x#2Ass respectively. There is no equivalence for K;3 and K>3 in the laminate theory,
because the layers are assumed to be orthotropic, and they are rotated about the z-axis only.
However, such a coupling between inplane deformations and transverse shear deformation

may exist in textile composites as the fibers are inclined to the xy-plane unlike in the
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laminates. The beam constitutive relation in Eqn. (12) can also be expressed in terms of

compliance coefficients as:

ey S11 S12 813 P ap '
xMb = |S12 S Sn3 {M} + %MAT (14)
yY S13 S23 S33 4 Gy

2.3.1 Beam Steady State L.oadin ndition

Figure 13. Steady state loading for a beam.

The continuum unit-cell analysis assumes that all the unit-cells are subjected to
identical stress and strain fields, for a given state of loading. This is true in the case of

constant axial force (P) and constant bending moment (M) in the beam (Figs. 13a and 13b).
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However, when a shear force (V) is applied to the beam, the shear force will give rise to
building up of bending moment at every cross-section, such that V = — (dM/dx). This bending
moment varies linearly over the length of the beam violating the assumption of
homogeneous deformation. A state where the unit-cells are subjected to identical
deformation under a shear force can be created by adding a couple periodically (Fig. 13c),
or by having shear tractions on the top and bottom surfaces to cancel the bending moment
continuously (Fig. 13d). In both cases traction-free conditions are violated on the top and
bottom surfaces of the beam. As will be seen later, this situation creates difficulties in

estimating the shear stiffness of the beam accurately.

2.3.2 Unit-Cell Boundg_ry_Conditions

The left end of the unit cell, x=0 (Fig. 14) are subject to minimum support constraints
to prevent rigid body translation and rotation. The top and bottom surfaces of the beam are
assumed to be traction free. The edges x=0 and x=L have identical nodes in the finite element
model and periodic BC’s are enforced between these nodes. Three linearly independent

deformations were applied to the unit-cell, in order to find the beam stiffness matrix [K]

namely,

Case (i) unit axial strain (¥ = 1,4 = 0,y¥ = 0)

Case (ii) unit curvature accompanied by transverse deflection such that the transverse
shear strain was zero (€M = 0,xM = l,yﬁ" = 0)

Case (1ii) unit transverse shear strain (¥ = 0,%M = O,yﬁ’ = 1)

The periodic displacement constraints applied for each deformation case are presented in

Table 6.
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Table 6.  Periodic displacement BC’s for beam unit-cell.

u(L,z)-u(0,z) |w(Lz)-w(0,z){ AT
Case i. unit axial strain (epM=1) L 0 0
Case ii. unit curvature (xM=1) Lz -L%R2 0
Case iii. unit shear strain (ypM=1) 0 L 0

Consider the second deformation case, where a curvature is applied to the unit-cell. Let 'm’
and ’n’ be a set of corresponding nodes on the left and right ends of the unit-cell. The periodic

BC’s imposed between the nodes *m’ and 'n’ are shown in Fig. 14. Applying a curvature to
the unit-cell also induces transverse shear strain due to the ¥ term in the expression for yg"

(Eqgn. 13). The difference in displacement in the z-direction is therefore imposed to make the

macroscopic transverse shear strain equal to zero.

Fm= — pn
FP = — "

Figure 14. Boundary conditions pertaining to the deformation to M0, g,M=0,
M.
Yo =V
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2.3.3 Determination of Beam Stiffness Coefficients

The three linearly independent deformations described in the preceding section are
applied to the unit-cell. The temperature difference (A7) is set to zero for all three
deformations. For each case, the axial force P, the bending moment M, and the shear force
resultant V are computed from the nodal forces at the ends of the unit-cell. As explained
earlier, the axial force and shear force are constant through the unit-cell, but the bending
moment varies linearly across the unit-cell length. Therefore the bending moment at the
center of the unit-cell is used as the reference moment, which is obtained by averaging the
bending moment resultants at the ends of the unit-cell. From the force resultants, a

pseudo-stiffness matrix [k] can be computed that relates the forces and deformations as

ku k12 k13 834 P
kyy kyy k3| 4xM} = IM. (15)
k31 k32 k33 73’ 4

For example, k;;, k2; and k3; will correspond to the values of P, M, and V obtained for the
case of unit axial extension of the unit-cell (Case i). The pseudo stiffness matrix, in general
will not be symmetric since it does not relate corresponding forces and deformations
(conjugate quantities, product of which yields an energy term)—it can be rather considered
as amatrix of influence coefficients. The inverse of [k], denoted by [s] has some significance.

The matrix [s] is defined as

S11 S12 513 P &
S21 S92 So3| ML = M (16)

$31 833 S33 74

We know that V=0 is a steady state loading condition such that M.=M, where M is the
constant bending moment along the unit-cell. Noting that only the last column of [s]
multiplies with V, and comparing Eqns. (14) and (16), we can conclude that the first two

columns of [S] and [s] must be identical to each other. Since [S] is symmetric (S;3=53;,
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823=832), we can determine all but S33 of the beam compliance matrix [S]. An alternative

approach to predict the shear compliance S33 is explained in the next section.

2.3.4 Determination of Beam Shear Stiffness

The difficulty in estimating S33 (or K33) is associated with the inability to create a
state of deformation such that only V is present. The shear modulus of the textile composite
Gy can be computed by assuming that the unit-cells span the material in the z-direction also.
In that case periodic BC’s are imposed between the top and bottom surfaces of the unit-cell,
and the unit-cell is deformed transversely. Then, there will be shear tractions on the top and
bottom surfaces of the beam—in fact this situation would correspond to Fig. 13(d). One may
surmise that a shear correction factor %2 could be found such that K33=x Zzeh. But a simple
bimaterial beam example will show that the shear stiffness can be grossly underestimated.

Consider a bimaterial beam with layers of equal thickness (h/2). By performing a
continuum unit-cell analysis the shear modulus of the material is found to be equal to 2G; G
/(G+ Gz). Assuming G}/ Go= 10, Gy, = 0.182 G;. However the actual shear stiffness K33
is equal to #2(G; + G,) h/2, which means that the apparent shear stiffness G,,= (G;+ G2 )/2
=0.55G;. This is about three times the previous estimate. This discrepancy is due to differing
assumptions regarding the constancy of shear stress or shear strain. The continuum unit-cell
analysis imposes constant shear stress in the two materials, and hence the shear compliance
of the composite is the average of the compliances of the constituent materials. This is true
when there are a large number of unit-cells in the z-direction. In a bimaterial beam, however,
the shear strain is almost constant in the two layers, and hence the shear stiffness is the
average of the shear stiffness of the individual layers—which is consistent with the method
of computing Ass in the lamination theory. This illustrates the need for special procedures
for predicting the shear stiffness of thin textile composite beams.

To overcome this problem we use an energy approach to compute the shear stiffness

of a thin textile composite. We model a beam of length 2L consisting of two unit-cells, with
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plane strain finite elements. The beam is subject to boundary conditions corresponding to
pure shear strain (third boundary condition in Table 6). The top and bottom surfaces of the
beam are traction free. The shear strain energy over a length L in the middle of the beam, Uy,

is computed from the finite element results as

1 ., .
U, = 3 (3)rna, an
where (), and y(), are the shear stress and shear strain at the center of the i*" element and
A; is the area of the ith element. The summation is performed over all elements located in a

length L in the middle of the beam. Next, the shear strain energy over the same length L is

computed using the beam formula:

In the above equation P, M, and V can be obtained from the finite element results. The
coefficients S;3 and S>3 have already been estimated. Then by equating the shear strain
energy quantities in Eqns. (17) and (18), the only unknown, that is S33, can be evaluated. The
choice of two unit-cells to perform the above analysis deserves an explanation. When this
was tried with one unit-cell for the cases of isotropic and bimaterial beam, the results were
not good. It was mentioned earlier, that the application of a shear force would result in a
couple at the unit-cell ends to continuously cancel the effect of the bending moment created
along the beam length. This couple is manifested in the finite element results as concentrated
forces at the four corners of the unit-cell, thus creating severe stress concentrations. When
two unit-cells are used in the model, the stress concentrations remain in the corners of the
beam, but their effects diminish in the middle portion of the beam. As will be seen in the later,

the two unit-cell method gave very good K33 for both isotropic and bimaterial beams.

2.3.5 Determination of Beam CTE’s

The procedure for determining the beam thermal expansion coefficients (Marrey and

Sankar, 1993b) is as follows. The beam unit-cell is subject to a uniform temperature
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difference given by AT = Ty. The deformations in the beam are restrained by setting

80M=xM=y0M=0. Then the beam constitutive relation, Eqn. (12), will reduce to
P Ky Kip Ki3| (ap
Mct = — |Kpyp Ky Kpz| day T, (19)
4 K3 Ky Kyz| |V

The axial force P, the bending moment resultant at the center of the unit cell M, and the shear
force Vare computed from the nodal forces at the ends of the unit-cell. Then the beam CTE’s

can be estimated from the expression,
ap P
ayl = - Ti (K]~ 14 M, (20)
Gy 0 1%

2.3.6 Results and Discussion

The procedures described above were implemented for the following cases:
(a) an isotropic beam
(b) a bimaterial beam with isotropic layers of equal thickness
(9] a plain weave textile composite beam where the yarn is assumed to be transversely

isotropic and the matrix is isotropic.

Table 7. Constituent material properties for beam examples.
isotropic beam E=10GPa,v =0.30, a = 10x10-° /°C

bimaterial beam E; =70 GPa, v; = 0.33, a; = 23x10~6 /°C
E; =3.5 GPa, v; = 0.35, ay = 60x10-6 /°C

plain-weave yarn:

textile beam E; =159 GPa, E; = 10.9 GPa, G;, = 6.4 GPa,

v12 =0.38,v23 =0.38, a; = 0.045x10° /°C, a, = 20.2x10-6 /°C
where the yarn direction is parallel to the /~axis and 23-plane
is the plane of isotropy.

matrix:
E;, = 3.5 GPa, v,, = 0.35, a,, = 60x10-5 /oC.
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The properties of the constituent materials for all the cases are listed in Table 7. The
dimensions of the unit-cell and the yarn architecture for the textile beam were taken from
Yoshino and Ohtsuka (1982). The same unit-cell dimensions (length of 3.6 mm and height
1.8 mm) were also used for the isotropic and bimaterial cases. The unit-cell of the beam was
discretized using eight-node isoparametric plane strain finite elements. The finite element
mesh for the isotropic unit-cell and the plain weave unit-cell were identical except that

different material properties were used.

Table 8.  Comparison of beam stiffness coefficients and CTE’s (SI units).

Kj; 147 K> K33 ap /°C ay /°C
unit-cell | 19.78x10¢ 0 535 [5.96x10¢ | 10x10- 0
isotropic analysis
beam beam |[19.78x10s | 0 534 |5.77x10s | 10x10- 0
theory
unit-cell | 74.29x10¢ | 30.20x102 | 20.06 | 8.47x106 |30.73x10- | -14.62x10-
bimaterial analysis
beam beam | 74.29x106 | 30.20x10 | 20.06 | 8.62x106 |30.74x10- [-14.63x10-3
theory
unit-cell | 27.76x10¢ 0 5.41 19.21x106 |12.66x10- | —24.12x10-6
textile analysis
beam
mosaic |71.48x10- 0 8.13 | 8.14x10¢ | 4.39x10-¢ 0
model

Note: K;3, K>3 and ay are zero for all cases

The deformed unit-cells under various independent loading conditions are shown in
Figs. 15 to 17. The stiffness and thermal coefficients for the three beams are shown in Table
8. The results for the isotropic and bimaterial beams were compared to exact beam theory
solutions. Exact shear correction factors—0.833 for the isotropic beam and 0.555 for
bimaterial beam (Whitney, 1973) were used in the beam theory solution to compute the shear

stiffness given in Table 8. It can be seen from Table 8 that the beam unit-cell analysis is able
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to predict the axial and bending stiffness coefficients (Kj; and Kj;) very accurately. As
expected the shear stiffness (K33 or Ass) predictions have errors, but they are very minimal.
It can be noticed that the corners of the unit-cell are severely deformed (Figs. 15¢, 16¢ and
17d), when the unit-cell is subject to constant shear strain leaving the top and bottom surfaces
traction free. However when shear tractions are allowed on the top and bottom surfaces of
the unit-cell, the distortions at the corners disappear (Figs. 15d, 16d and 17¢). Then what is
obtained is the shear modulus G; and not the beam shear stiffness. The shear modulus of
the plain weave beam was found to be 3.07 GPa. This would yield the apparent shear stiffness
as Gy;h=5.53 x 105Nm™! ; whereas the actual shear stiffness is 9.21 x 106 Nm™1 (K33 in Table
8). The Young’s modulus of the textile beam E, may be extracted from Kj;, as K;;/h, which
would yield E, = 15.42 GPa. If this value of E, were used to predict the flexural stiffness of
a homogeneous beam as Dj; = Eh3%/12, we would obtain D;; as 7.50 Nm—whereas the
actual flexural stiffness is equal to 5.41 Nm. The same idea holds for the beam thermal
coefficients also. The beam CTE’s ap, oy and ay cannot be predicted from the
corresponding continuum CTE’s. Table 9 shows the discrepancy, for the plain weave
example, between the beam CTE’s obtained directly and the beam CTE’s obtained from the
corresponding continuum CTE’s. It may be noted that the continuum model would always
predict the thermal expansion coefficient ap as ay, and the thermal bending coefficient ayy
as zero. This underscores the importance of the present analysis for predicting the beam

stiffness properties for a thin textile composite directly.

Table 9.  Comparison of textile CTE’s.
CTE’s from CTE’s from % error

beam model continuum model

ap x 1076 /oC 12.66 11.30 -10.46

ay x 1078 /°C/m -24.12 0 o
ay /°C 0 0 0
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(a)

(b)

(e)

(d)

(e)

Figure 17. Textile beam. (not to scale)

(2) undeformed unit-cell; and deformation under: (b) unit extensional strain;
(c) unit curvature; (d) unit shear strain, top and bottom surfaces are traction
free; (e) unit shear strain, tractions allowed on top and bottom surfaces.




38

The textile beam stiffness coefficients were also estimated using a procedure similar
to the mosaic model (Ishikawa and Chou, 1982a). They are compared with the coefficients
obtained from the unit-cell analysis (Table 8). The idealization made in the mosaic model
is shown in Figure 18. The unit cell is divided into five segments, with each segment modeled
as across-ply laminate with a stacking sequence which best represented the yarn architecture
within that segment. The stiffness matrix of each segment was computed using laminate
analysis. Then the compliance of the textile beam was computed as the length-weighted

average of the compliance of the five segments.
: 5
= (1 kpotk
[s] = (L)];L (5] @1

From Table 8, it can be seen that the mosaic model predicts K33 reasonably well. The reason
for the lack of agreement in K;; and K> can be attributed to the fact that a major portion of
the yarn is modeled as a 0° laminate in the mosaic model, which tends to over-predict the

axial and flexural stiffnesses.

@ 0 deg. laminate 90 deg. laminate - matrix material

Figure 18. Mosaic model of the textile unit-cell.




39

2.4 Plate Thermo-Mechanical Coefficients

The previous section described the concepts involved in modeling a thin textile
composite structure as a.. homogeneous beam to predict the beam stiffness coefficients and
CTE’s. The procedure is extended in this section, utilizing three-dimensional finite element
analysis, to model the thin composite as a plate (Sankar and Marrey, 1992) to determine the
corresponding thermo-elastic coefficients.

The plate is assumed to be in the xy-plane with unit-cells repeating in the x- and
y-directions. The lengths of the unit-cell in the x- and y-directions are assumed to be a and
b respectively and the unit-cell thickness as 4. On the macroscale the plate is assumed to be

homogeneous and the plate behavior is characterized by the plate constitutive relation:

( r N

M P
rN R ex() a§
* eM al
N, y0 y
Ny 4B yi‘&, aﬁy
J . = [B D] 4 4 b — 4 AT & (22)
M, xQ” §
My xM By
ngyJ xM ﬁgy
xy L J

G S J
where ¢;p™, y;0M and x;M are the midplane axial strain, shear strain and curvature; ;” and
pBiP are the plate thermal expansion and bending coefficients; N; and M; are the axial force
and bending moment resultants respectively in the homogeneous plate. The plate stiffness
matrix comprises of the [A], [B] and [D] sub-matrices, which are the plate extensional

stiffness, coupling stiffness and bending stiffness matrices respectively. The plate stiffness



matrix can be expanded as:
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Ay Ay Agg
Ay Ay Ay
Alg Ay Ags

By, By, Byg
B, By, Byg
Bis By Beg

By, By, By
By, By, By
B¢ By B

Dy Dy; Dy
Dy Dyy Dy
D¢ Dy D«56J

(23)

The midplane strains and curvatures are related to the midplane displacements and rotations

as:

(;‘M - évo
y0 ay’
oy
M Y
=

2.4.1 Unit-Cell Boundary Conditions

v _ O
e dy ox

M _ auo avO

Vo = dy ax

awy

(24)

(25)

The plate thermo-mechanical properties are obtained by modeling the unit-cell with

eight-node brick elements and subjecting the unit-cell to six linearly independent

deformations. The six deformations are given by: (1) unit s% maintaining the rest of the

macroscopic strains and curvatures as zero; (2) unit e% such that remaining strains and

curvatures are zero; and similarly (3) unit 'yffyo; (4) unit 2, (5) unit »%; (6) unit %Y. In the

last three cases (non-zero curvatures) the deformation was accompanied with a transverse

deflection such that the transverse shear strain was zero (Table 10).



Table 10. Periodic displacement BC’s imposed on the lateral faces of the plate unit-cell.
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way)-| Way) | way) | u(xb)}~ | Wxb)— | wixb)— | AT

u(0y) | w0y) | wOy) | ux0) | v(x0) | w(x0)
1. | eM=1 a 0 0 0 0 0 0
2. | goM=1 0 0 0 0 b 0 0
3. | vgoM=1| © a2 0 b2 0 0 0
4, | wM=] az 0 —-a?R2 0 0 0 0
5. =M=1 | 0 0 0 0 bz —b%2 0
6. | #yM=1 0 az/2 -ay/2 bz/2 0 —bx/2 0
7. | ATM=] 0 0 0 0 0 0 1

y

Figure 19. Boundary conditions on plate unit-cell to restrain rigid body
translation and rotation.

The unit-cell is subject to minimum support constraints to prevent rigid body rotation
and translation (Fig. 19). The top and bottom surfaces of the plate are assumed to be free of
tractions. The faces x=0 and x=a have identical nodes in the finite element model, and so
do the pair of faces y=0 and y=b. The identical nodes on opposite faces of the unit-cell are
constrained to enforce the periodic BC’s. The traction boundary conditions on the lateral

faces of the unit-cell are:
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F'(a, Y, Z) = — Fl(o’ Yy Z) .
Fx,b,7) = — F(x,0,7) '~ 5»? (26)
The periodic displacement BC’s enforced for each mode of deformation are presented in

Table 10.

2.4.2 Determination of Plate Stiffness Coefficients and CTE’s

The six linearly independent deformations are applied to the unit-cell such that only
one of the macroscopic strains or curvatures is non-zero (first six cases in Table 10). The
temperature difference is set to zero for all six cases. It must be noted that the applied

deformations must ensure that the transverse shear strains, y,,™ and ysz are zero where

)’%'-"/’x"'a_w'

ox @7
7% =y, t+ dw

dy

The force and moment resultants can be obtained by one of the following two methods. In
the first method, the resultants are computed by averaging the nodal forces on each face of
the unit-cell. For example, on the face x=a the force and moment resultants are computed

using the relations:

M= (1) Y @y

i=1

n
Ny = (%) > F¥a,y,z)

i=1

(5 2.2 Fex)

n
My = (1) >z Fi%a,y.2

i=1

(28)
M, =

S|~

where F; () and F, () are the nodal forces in the x and y directions at the i node and 'n’ is

the total number of nodes on the face. The force and moment resultants can also be computed
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by averaging the microstresses over the unit-cell volume. Then the resultants on the face x=a

are obtained as

1 _ 1
N, = =5 j Ou(x,y,2)dV Ny, = A J Try(X, ¥, 2)dV (29)
vV v
1 _ 1
Mx = ;l; f zO'xx(x,y, Z)dV Mxy = ';‘b‘ f ery(x9y9 Z)dV (30)
|4 Vv

Substituting the values of the deformation and the force resultants in the plate constitutive
relation, Eqn. (22), the stiffness coefficients in the column corresponding to the non-zero
deformation can be computed. This procedure is repeated for other deformation components
to obtain all the stiffness coefficients.

To predict the CTE’s, the plate unit-cell is subject to a uniform temperature
difference, given by AT = Tp. In the finite element model, periodic displacement BC’s are
applied such that all six components of the deformation are zero (seventh case in Table 10).
The averaged force and moment resultants are computed using one of the procedures
described above. The thermal expansion coefficients a?, and thermal bending coefficients

PP are then obtained from the relation:

B a5

2.4.3 Results for Plate Stiffness Coefficients

The plate [A], [B], [D] matrices and CTE’s were found for the seven examples listed
in Table 2 by implementing the finite element code uTEy—10. As a preliminary check, the
code was executed for an isotropic plate and compared with the plate properties using

H_EQ—Z_) and Dy; as

lamination theory (for one-ply). For example, A;; was calculated as

ERh3

Tl — o9 a1 3y Then the properties were computed for a bimaterial plate using the finite
-



44

element code. The plate properties for the isotropic and bimaterial cases are presented in
Tables 11 and 12 respectively. The bimaterial plate properties were also computed using the
lamination theory for two plies, and from the homogenous 3-D elastic constants computed
in the previous section (Section 2.1). For example the coefficient D;; is obtained from the

EMp3

————— The finite element results for the bimaterial
12(1 — v

3-D elastic constants as D, =

case were exact, i.e., identical to the results obtained with the two-ply lamination theory. The
[D] matrix computed from the bimaterial 3-D constants was found to be in good agreement
with the two-ply lamination theory only because both the layers were equal in thickness. This
is a special case, and in general, the [D] matrix obtained from the 3-D elastic constants will
be different from the two-ply lamination theory results.

The plate properties for the unidirectional composite examples are presented in Table
13 and for the textile examples in Table 14. In all the examples it was found that the plate
properties, especially [B], Dj;, {aP} and {8P} could not be predicted from the corresponding
3-D elastic constants.

Table 11. Non-zero [A], [B] and [D] coefficients for example 1 (isotropic plate) using
finite elements

A Apz A2 Ass Dy Dy, D23 Dgs | axP, ayP

x106 | x108 x10% | x108 x10-3 x10-3 x103 | x10°3 |x10°60C

uTEx-10 2.810 | 0.843 | 2.810 0.983 | 15.320 | 4.606 |15.320 |5.358 10
(FEA)

lamination | 2.810 | 0.843 | 2.810 | 0.983 | 15.310 | 4.593 [15.310 | 5.358 10
theory

Note: [A], [B] and [D] coefficients in SI units
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Table 12. Non-zero [A], [B] and [D] coefficients for example 2 (bimaterial plate) using
finite elements :

AL An | Ap Ag6 Bjj, By B> Bgs

x106 x109 x106 x103 x103 x10-3
UTEx-10 9.832 2.043 3.895 -0.563 -0.108 -0.228
(FEA)
lamination theory | 9.832 2.043 3.895 -0.563 -0.108 -0.228
for two plies
lamination theory | 9.844 2.048 3.899 0 0 0
using 3-D elastic
constants

Dyj, Dy Dss axP, ayP | BiP, ByP

x1073 x10-3 x10-3 x10-8 /°C | /°C/m

UTEy-10 53.590 11.149 21.220 17.800 0.170
(FEA)
lamination theory 53.573 11.131 21.220 17.814 0.170
for two plies
lamination theory 53.762 11.183 21.293 8.190 0
using 3-D elastic
constants

Note: [A], [B] and [D] coefficients in SI units




Table 13.

composite) using finite elements
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Non-zero [A], [B] and [D] coefficients for examples 3 and 4 (unidirectional

A Ap Az Ass
x100 x109 x106 x106
Example 3 | uTEx-10 0.690 0.149 0.496 0.177
(FEA)
Halpin-Tsai Eqns. 0.673 0.109 0.363 0.113
and lamination
theory
Example 4 | uTEy-10 0.452 0.062 0.285 0.114
(FEA)
Halpin-Tsai Eqns. 0.444 0.039 0.151 0.045
and lamination
theory
Dy Dy Doz Dgs axPx ayPx
x1076 | x100 [ x10® | x107° 106 106
Example 3 | uTEx~-10 3.589 |0.596 | 1.980 0.947 15489 | 26.184
(FEA)
Halpin-Tsai { 5.606 | 0.908 | 3.026 0.939 15.625 | 55.112
Eqgns. and
lamination
theory
Example 4 | uTEyx-10 2.256 |0.224 | 0.873 0.568 7.378 13.188
(FEA)
Halpin-Tsai | 3.702 |0.328 | 1.262 0.371 6.774 | 34.239
Eqns. and
lamination
theory

Note: [A], [B] and [D] coefficients in ST units
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Table 14. Non-zero [A], [B] and [D] coefficients for examples 5, 6 and 7 using finite
elements

Aqn Az Ap Ass  |Bi x103
x106 x106 x106

Example 5 | uTEx-10 2.681 0.565 0.489 0
(FEA)
lamination theory 2.783 0.503 0.490 0
using 3-D constants

Example 6 | uTEx-10 12.090 3.470 1.223 0
(FEA)
lamination theory 13.938 1.787 1.208 0
using 3-D constants

Example 7 | uTEx-10 14.683 1.351 1.210 | 0.495*
(FEA)
lamination theory 16.531 0.770 1.239 0
using 3-D constants

D1, D22 Dy Dgs af,aP | P
x103 x1073 | x103 [x10%/°C| /°C/m

Example 5 | uTEy-10 5.687 1.518 1.577 27.465 0
(FEA)
lamination 12.054 2.177 2.124 28.363 0
theory using
3-D constants

Example 6 | uTExy-10 41.695 0.373 5.879 1.480 0
(FEA)
lamination 75.942 9.734 6.582 1.556 0
theory using
3-D constants

Example 7| uTEx-10 90.072 1.123 6.149 2910 |-0.037*
(FEA)
lamination 87.283 4.195 6.753 1.550 0
theory using
3-D constants

* In example ’7, Byy= -Bj; and B,P = -, P

Note: [A], [B] and [D] coefficients in SI units



CHAPTER 3
ANALYTICAL MODELS FOR THERMO-ELASTIC CONSTANTS

The complex yarn architectures in a textile composite make numerical modeling of
the unit-cell extremely difficult. Besides, the computational memory and run-time
requirements for a detailed finite element analysis are enormous. As explained in the
introductory chapter, there are several parameters that can be changed to alter the effective
composite properties. These parameters may be the fiber material in the yarn, fiber volume
fraction in the yarn (also called yarn packing density), overall fiber volume fraction, preform
architecture or the matrix material properties; This emphasizes the need for simple analysis
procedures to predict the trend in variation of composite properties when one of the
parameters is changed. These procedures will be of use to a designer in determining the
optimum parameters for a certain application.

Analytical methods are approximate because they assume certain forms for the state
of stress and strain in the unit-cell. Averaging the stiffnesses or compliances of the matrix
and the inclusion has long been used to estimate the bounds of effective elastic properties
of the composite. Essentially the stiffness averaging assumes a state of uniform strain in the
composite (isostrain), and compliance averaging assumes a state of uniform stress (isostress)
in the matrix and inclusion. In fact the rule of mixtures expressions for estimating the
effective properties of a unidirectional composite is based on such averaging schemes. Naik
(1994) proposed an analytical method (TEXCAD) in which the yarns are discretized into
segments. Knowing the direction of the yarn in each segment, the segment stiffness are
computed using appropriate transformations. Then assuming a state of isostrain, the
composite stiffness is obtained by volume-averaging the yarn-segment stiffness and matrix

stiffness in the unit-cell. This method seems to work, when there is multi-directional

48
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reinforcement in the composite. However the method fails for composites with preferential
yarn reinforcement. For example, the transverse modulus and the inplane shear modulus for
a unidirectional composite cannot be estimated using the above method. Another analytical
model called the mosaic model, was proposed by Ishikawa and Chou (1982a). As discussed
earlier, in the mosaic model the yarn architecture is simplified to that of a cross-ply laminate
and the lamination theory is used to predict the composite properties.

The state of stress/strain in a textile composite, subjected to a uniform macrostress,
is much more complex than that assumed in the above mentioned methods. We propose a
scheme of selective averaging—called the selective averaging method (SAM)—in which
both stiffness and compliance coefficients can be averaged selectively depending on a more

realistic assumption of either isostress or isostrain.

3.1 Selective Averaging Method (SAM) for Continuum Properties

In this section, we describe SAM for estimating the effective elastic constants and
CTE’s for a textile composite. Consider a rectangular hexahedron of dimensions a X b X ¢
as the unit-cell. The unit-cell is discretized into slices on the mesoscale, and elements on the
microscale as shown in Fig. 20. To distinguish between the macrolevel, mesolevel and

microlevel properties in this section, an over-tilde is used to denote the mesolevel properties,

and a superscript "M” is used to denote the macrolevel properties. For example, [CM], [C]
and [C] will represent the macrolevel, mesolevel and microlevel stiffnesses respectively.
The objective here is to determine the coefficients of the effective stiffness matrix
[CM] as defined in Eqn. (2). To find the first column of the effective stiffness matrix, the
unit-cell is divided into slices (mesolevel) of thickness dx parallel to the yz-plane (Fig. 20a).
Each slice is further sub-divided into elements (microlevel) as shown in Figs. 20(b) and
20(c). The unit-cell is subjected to a deformation such that all macrostrains except exxM are

equal to zero and exM=1. It is assumed that the mesolevel and microlevel strains,
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corresponding to the zero macrostrains, are negligible. In other words,

M = 5 =¢ =0 i= 1 (32)

(b) (©

Figure 20. Hierarchy of discretization for a unit-cell to determine first and fifth
columns of effective stiffness matrix.
(a) unit-cell; (b) slice; (c) element.

Assuming a state of isostrain within the slice (ex(x,y,2) = €(x) ) the average stiffness of

a slice can be obtained as:

c

b
¢ = El'c' f [ Cy (6. y,2) dy dz (33)
z=0y=0

where Cj;(x,y,z) is the element stiffness coefficient referred to the unit-cell coordinates. The

stiffnesses of the slices are averaged on the macrolevel based on the isostress assumption,

i.e., Gyl(x) = oM . Then the first column of the effective stiffness matrix can be computed

using the following two relations:



a
1 1 1
L L1 1 4 (34)
Cllwl ? fcll(x)
x=0
c b a ”
C
cM = le;c' [ Jé “x Cotoy,2) dxdydz (i=2..6) (35
z=0y=0x=0 n

A similar procedure can be implemented to determine the second and third columns of the
macroscale stiffness matrix [CM].

A slightly different averaging scheme is used when the unit-cell is subjected to shear
strains on the macrolevel. Consider the case where the unit-cell is subjected to unit y, at
macroscale. The unit-cell is again discretized into slices and elements as shown in Fig. 20.
It is assumed that all the other components of strain at the macrolevel, mesolevel and

microlevels are zero. This can be expressed as:
M = =¢ =0 i =4 (36)

where &4 = ;. We also assume that the shear stress is constant in a slice such that
Ty(%,y,2) = Tyy(x). The shear compliance of a slice can then be obtained by averaging the

shear compliances of all the elements in the slice as:

c b

1
—1 44 37
Cu® bc J J C44(x %2 * 37)

The fourth column of the stiffness matrix Ci4™ is obtained under the assumption that all the

slices are under a state of constant shear strain:

c b a
Moo L Cad® .
Ca J J I Caa67,2) Ciu(x,y,z) dx dy dz (i =1,...,6) (38

A similar procedure is used to determine the fifth and sixth columns of [CM].
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To determine the macroscale CTE'’s, a uniform temperature difference (A7) is
applied throughout the unit-cell. The unit-cell is constrained from expanding such that all
the strain components on the macrolevel are zero. A state of isostrain is assumed in the
unit-cell, implying that the mechanical strain components on the mesolevel and microlevel

are also zero. This can be expressed as:
=0 i=1,...,6 39)
Then the thermal constitutive relations on the macrolevel and microlevel will reduce to:

[M) = - [CM{ac)aT

{0} = - [Cl{a)dT “0)

The macrostresses may be computed by volume-averaging the corresponding microstress

component as shown below:

c b a
oM} = ﬁ j f j{a} dx dy dz 41
z=0y=0x=0

Then from Eqgns. (40) and (41), we can compute the macroscale CTE'’s as:
ey — 1 rAMy-1
(a9} = — [C*17! (1) “2)

where {I} is given by the expression:

¢c b a
{1} = [ j j[C]{a}dxdydz (43)
=0

z=0y=0x

3.2 Continuum Results using SAM

A code called u TEy—20 (pronounced as microtech) was written in FORTRAN 77 to
implement SAM. The code was executed to estimate the thermo-elastic constants for the
seven examples, whose constituent material properties are listed in Table 1. Input to the code

were the unit-cell dimensions, yarn geometry information, constituent material properties,
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and the number of divisions required to discretize the unit-cell in the x, y and z directions.
The element stiffness matrix [C] was determined by computing the elasticity matrix for the
material point at the geometric center of the element, and transforming it to the unit-cell
coordinate system. The predicted macroscale stiffness matrix [CM], and consequently the
macroscale compliance matrix will not be symmetric due to the approximate nature of the
analysis. Therefore the macroscale compliance matrix was made symmetric by averaging
the off-diagonal compliance coefficients. The macroscale elastic constants were computed
by comparing the symmetrized compliance coefficients with that of a homogenous,
orthotropic medium. The user manual for uTEy~20 is provided in Appendix-A.

The results for a bimaterial medium (example 2) are given in Table 15. The results
for example 1 are not listed, since it is obvious that SAM would predict the elastic constants
for an isotropic medium exactly. The bimaterial medium consisted of two different layers
of isotropic materials of equal thickness alternatingly stacked in the z-direction. The elastic
constants for the bimaterial medium were compared with an exact solution (derivation
explained in Section 2.1.3), and with the previously computed finite element results. It can
be observed that SAM marginally under-predicts the longitudinal and transverse Young’s

moduli, while the inplane and transverse shear moduli are exact.

Table 15. Continuum properties for example 2 using SAM.

E,, E, E; Gyzs Gy Vizs Vi | &6 ay° az©
(GPa) | (GPa) | O»z | (GPa) | " X X
(GPa) 10-6/°C | 10-6/°C
uTEx-20 | 36.02 | 872 | 2.48 | 1523 |0.599 |0.183 | 3.88 | 52.20

(SAM)
Example 2

(bimaterial | #uTEx-10 | 36.79 | 9.79 248 ] 1523 10.312 ]0.208 8.19 59.60
medium) (FEA)

exact 36.79 | 9.79 | 2.48 | 15.23 |0.312{0.208 | 8.19 59.60

solution
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Table 16 presents the SAM results for two cases of unidirectional composite
(examples 3 and 4). The fiber and matrix had identical Poisson’s ratio in example 3, and
different Poisson’s ratio in example 4. The SAM results were compared with the finite
element results from the previous chapter, and with analytical solutions for unidirectional
composite properties. The analytical expressions used were the rule of mixtures formulae
for E; and v; 7 and the Halpin-Tsai equations (Halpin and Tsai, 1969) for Er, Gyr and vrT.
All of the unidirectional composite thermo-elastic constants but for Er and ar were found
to match well with the compared data. Table 17 compares the SAM results for three textile
composites (examples 5, 6 and 7) with available results. In all three cases the thermo-elastic

constants obtained by implementing SAM were in good agreement with the available results.

Table 16. Continuum properties for examples 3 and 4 using SAM.

UTEx—20 64 5024 | 1045 | 836 | 0.341 | 0300 ]| 1241 21.51
(SAM)

Example 3 | uTEx-10 | 63.55 | 36.48 | 12.93 994 | 0.300 | 0.232 15.74 40.79
(unidirect. (FEA)

composite) |~ 1e of 64 | 3455 | 1126 | 1329 | 0.300 |0.300 | 15.63 55.11
mixt./
Halpin-
Tsai eqns.

uTEy-20 | 4335 | 3247 | 413 | 3.04 | 0245 [0218 | 7.40 11.60
(SAM)

Example 4 | uTEx-10 | 43.12 | 18.15 | 5.59 392 | 0242 |0.222 7.40 25.44
(unidirect. (FEA)

composite) I leof | 4340 | 1479 | 445 | 591 | 0260 |0252 | 6.77 34.24
mixt./
Halpin-
Tsai egns.
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Table 17. Continuum properties for examples 5, 6 and 7 using SAM.

E.E | E G, | Gy | %o Yy |axSayX | aX
(GPa) | (GPa) | G |(GPa) | ™ 107/°C | g-6poc
(GPa)
uTEy-20 | 1246 | 6.62 | 1.64 | 1.67 [0.399 |0.162 [ 29.10 68.48
(SAM)

Example 5
) uTEx-10 | 11.81 | 6.14 | 1.84 | 2.15 | 0408 [0.181 | 28.36 79.57

(plain-

weave) (FEA)
Dasgupta | 14.38 | 6.25 194 | 3.94 | 0463 |[0.167 | 22.50 86.00

results
uTEx-20 | 63.41 | 11.13 | 3.79 | 4.24 | 0.402 |0.027 1.36 21.53
(SAM)
Example 6
(plai uTEx-10 | 53.61 | 10.88 | 441 | 472 [ 0365 |0.128 [ 1.56 22.71
plain—

weave) (FEA)
TEXCAD | 64.38 | 11.49 | 5.64 | 4.87 |0.396 |0.027 1.33 20.71

uTEx-20 | 6930 | 11.62 | 4.06 | 473 | 0.355 {0.031 1.21 20.25

(SAM)
Example 7
(5-harness uTEx—10 | 64.51 | 11.33 | 445 | 4.85 | 0329 {0.047 | 1.55 22,03
weave) (FEA)

TEXCAD | 66.33 | 11.51 | 493 | 489 |[0.342 [0.034 | 1.46 21.24

3.3 Selective Averaging Method (SAM) for Plate Properties

In this section, the SAM procedure to compute the plate stiffness coefficients and
plate thermal coefficients (for a thin textile composite) is described. To distinguish between
the macrolevel, mesolevel and microlevel [A], [B] and [D] matrices, an over-tilde is used to
denote the mesolevel stiffness, and a superscript ”"M” is used to denote the macrolevel plate
stiffness. However in the remaining sections, [A], [B] and [D] (without a superscript or

overscript) will refer to the macroscale plate stiffness matrices. Also in this section, the
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complete plate stiffness matrix on the macroscale, as defined by Eqn. (23) will be denoted

by [CM], such that:

AM pM
[c* = [BM DM] (44)

The procedure to find the plate stiffness and thermal coefficients is analogous to that
used to find the continuum thermo-elastic constants. To find the first column of the effective
plate stiffness matrix, the unit-cell is discretized into slices (mesolevel) and elements
(microlevel) aé shown in Fig. 20. The unit-cell is subject to the deformation given by e%:l.
The following assumptions are made regarding the midplane strains and curvatures on the

macrolevel, mesolevel and microlevel:

M=gy=¢€y=0 i=23 )
wM =g, =u,=0 i=13 (

It is also assumed that the non-zero strain component &, and the force resultant Ny are
uniform within the mesoscale and macroscale respectively. These two assumptions can be

expressed as the following equations:
(46)

The mesolevel stiffness coefficient A 11 can then be obtained by averaging the corresponding

element stiffness coefficients over the slice (consequence of the isostrain assumption) as:

c b
A ='ll; J JQ“(x,y,z) dy dz (47)
z=0y=0

where Q11 is the plane-stress stiffness coefficient in the classical lamination theory (Agarwal

and Broutman, 1990), which has been transformed to the unit-cell’s xyz-coordinates (for an
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isotropic material, Q; = 1= )- The macroscale force and moment resultants can be

expressed in terms of the microscale stresses by the following relations

i=1273 (48)

The assumption of uniform force resultants on the macroscale and Eqn. (48) yields the

following expressions for the first column of plate stiffness coefficients

a
1 _1 J
2 == 49
AM a
1 2o 11(x)
c b a
1 it
ey =1 I j —— Qu(xy2) drdydz (i =1,2,3) (50)
Ap()
z=0y=0x=0
c b a
i= 1273

A similar procedure is followed to compute the second column of the effective plate stiffness
matrix.

In the case of shear loading y% = 1, the unit-cell is discretized into slices parallel
to the yz-plane. The assumptions of isostrain and uniform force resultants are reversed from

the case of normal loading. The force resultant Ny, is assumed to be uniform within a slice
such that

(32)
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It is also assumed that yyy is the only non-zero deformation component on the macrolevel,
mesolevel and microlevel. Averaging the element compliance coefficients over the slice, we

obtain:

b a
1 1
" ab dx d 53
033(2) ”’j J 3ﬂx%@ 4 (53)
y=0x=0

The mesolevel stiffnesses are then averaged over the volume of the unit-cell to yield the third

column of the plate stiffness matrix, as follows

c b a
M1 Q% y,2) -
i = j f f Oy PO & dyde (=123 69

,g) (55)

a
oL 0(s3.2) (=12
" w f J 2 Oy ) Q@ dxdydz =i’k

The expressions for the fourth, fifth and sixth columns of the plate stiffness matrix
can be obtained in a similar fashion to that explained above, except that the one of the
curvature component will be non-zero instead of a midplane strain component. For example,
to determine the fourth column, #, will be the only non-zero deformation on the macroscale,
mesoscale and microscale. Assuming that the curvature is uniform within a slice, we get
#, = #, Then by averaging the element stiffness coefficients over the slice, we obtain an

expression analogous to Eqn. (47) as:
c b
D]l(x = ";‘ J j Z2Q1](x,y,2) dy dz (56)

The moment resultant M, is assumed to be uniform on the mesoscale such that MM =M,
By averaging the slice compliance coefficients over the unit-cell volume, we get the

following relations for the fourth column of the plate stiffness matrix:



a
11 J 1
—_—= dx 67
M a ~
Pa " ] byw
c b a "
M .L D” | =
Cii =75 Z— Qu(x,y,2) dxdy dz (i =1,2,3) (58)
z=0y=0x= D”(x)
b a
(i=1273)
c}g=a_1b [ j I Qu(xy.2) drdydz = i'%'3 (59)

The fifth and sixth columns of the plate stiffness matrix can be found by using a similar
procedure.

To find the plate thermal coefficients, €;p and % are assumed as zero in the
macrolevel, mesolevel and microlevel. The thermal stresses developed in the microscale due

to a uniform temperature difference of AT=Tj are given by:

{0} = - [Ql{al}T, (60)

(o} = {g;} {a) = {35} 61)
Tay Axy

The macroscale plate constitutive equation will reduce to

{1{%} = - [c¥] {gﬁ}To (62)

By averaging the microscale stresses given by Eqn. (60) over the unit-cell volume (using

where

Eqgn. 48), and equating to the macroscale force and moment resultants in Eqn. (62), we get

the following relations for the plate CTE’s:

-
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where I1 and I are integrals given by the expressions:

¢c b a
J J[Q]{a} dx dy dz
z=0y=0x=0
¢ b a 64)
2=lbf J jz[Q] ) dx dy dz
z=0y=0x=0 ;

3.4 Plate Results using SAM

The plate coefficients and plate CTE’s were computed for examples 2-7 by
implementing SAM, and compared with the finite element results presented in the previous
chapter. The computed coefficients for the examples are listed in Tables. 18-20. The
properties for the bimaterial plate were predicted very accurately (Table 18). For the
unidirectional composite examples, SAM was able to predict the [A] matrix coefficients
(except for Age), Dy, and the plate CTE’s very well (Table 19). However SAM grossly
over-predicted Dy and Dy and under-predicted the coefficient Dgg. For the textile

composite examples (Table 20) SAM predicted all but A1, and D5 with very good accuracy.
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Non-zero [A], [B] and [D] coefficients for example 2 (bimaterial plate) using

SAM.
AL Az | A Ass Bij, B2, Bjz Bss
x106 | x10% | x106 x103 x103 x10-3
UTEy-20 9.844 2.045 3.899 -0.565 -0.108 -0.228
(SAM)
UTEx-10 9.832 2.043 3.895 ~0.563 -0.108 -0.228
(FEA)
lamination theory | 9.832 2.043 3.895 -0.563 -0.108 -0.228
for two plies
lamination theory | 9.844 2.048 3.899 0 0 0
using 3-D elastic
constants
D1, D2 Desg axP, ayP | BiP, PyP

x1073 x1073 x103 | x10°6/°C | /°C/m
UTEy-20 53.727 11.163 21.282 17.828 0.170
(SAM)
UTEx-10 53.590 11.149 21.220 17.800 0.170
(FEA)
lamination theory | 53.573 11.131 21.220 17.814 0.170
for two plies
lamination theory 53.762 11.183 21.293 8.190 0
using 3-D elastic
constants

Note: [A], [B] and [D] coefficients in SI units
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Table 19. Non-zero [A], [B] and [D] coefficients for examples 3 and 4 (unidirectional
composite) using SAM. :

Ajg A A Ags
x106 x106 x106 x106
Example 3 | uTEx-20 0.688 0.175 0.475 0.102
(SAM)
UuTEx—10 0.690 0.149 0.496 0.177
(FEA)
Halpin-Tsai Eqns. 0.673 0.109 0.363 0.113
and lamination '
theory
Example 4 | uTEx-20 0.443 0.074 0.261 0.040
(SAM)
UTEx-10 0.452 0.062 0.285 0.114
(FEA)
Halpin-Tsai Eqns. 0.444 0.039 0.151 0.045
and lamination
theory
Dy Dy, D;; Dgg axPx ayPx
x106 | x10-6 | x106 | x10° 10-6 106
Example 3 | uTEx-20 3.750 |1.029 | 3.112 0.541 14.476 | 24.750
(SAM)
UTEx-10 3.589 |0.596 | 1.980 0.947 15.489 | 26.184
(FEA)
Halpin-Tsai 5.606 |0.908 | 3.026 0.939 15.625 | 55.112
Eqgns. and
Jlamination
theory
Example 4 | uTEx-20 2.308 {0446 | 1.799 0.195 6.628 13.076
(SAM)
UTEx-10 2.256 |0.224 | 0.873 0.568 7.378 13.188
(FEA)
Halpin-Tsat 3.702 10.328 | 1.262 0.371 6.774 34.239
Eqns. and
lamination
theory

Note: [A], [B] and [D] coefficients in SI units



63

Table 20. Non-zero [A], [B] and [D] coefficients for examples 5, 6 and 7 using SAM.

Ajp, A Ap As6 By
x 108 x 106 x 106 x103
Example 5 UTEx-20 (SAM) 2.667 0.446 0.379 0
UTEx-10 (FEA) 2.681 0.565 0.489 0
lamination theory 2.783 0.503 0.490 0
using 3-D constants
Example 6 UTEx-20 (SAM) 12.215 0.577 1.095 0
UTEx-10 (FEA) 12.090 3.470 1.223 0
lamination theory 13.938 1.787 1.208 0
using 3-D constants
Example 7 UTEx-20 (SAM) 16.039 0.631 1.209 0.590*
UTEx-10 (FEA) 14.683 1.351 1.210 0.495*
lamination theory 16.531 0.770 1.239 0
using 3-D constants
Dy, Dy Dy Dgs a?, ayP B?
x 1073 x103 | x103 |x10%°C | /oC/m
Example 5 | uTEx-20 (SAM) 6.017 1.590 1.360 27.505 0
UTEx-10 (FEA) 5.687 1.518 1.577 27.465 0
lamination theory 12.054 2.177 2.124 28.363 0
using 3-D
constants
Example 6 | uTEx-20 (SAM) 44782 2.733 4.398 1.984 0
UTEx-10 (FEA) 41.695 0.373 5.879 1.480 0
lamination theory 75.942 9.734 6.582 1.556 0
using 3-D
constants
Example 7 | uTEx-20 (SAM) 81.164 3.307 5.868 2422 -0.028*
uTEx-10 (FEA) 90.072 1.123 6.149 2910 -0.037*
lamination theory 87.283 4.195 6.753 1.550 0
using 3-D
constants

* In example 7, By= —Bj; and ﬂy” = -0,
Note: [A], [B] and [D] coefficients in SI units




CHAPTER 4
FINITE ELEMENT MODELS FOR STRENGTH PROPERTIES

In Chapter 2, we had demonstrated finite element procedures to model a general
textile composite either as a three-dimensional (continuum) material or as a thin plate/beam
to predict their corresponding thermo-mechanical coefficients. In this chapter, we extend the
same numerical models to compute the thermal residual stresses due to processing in the
yarns and the matrix. Then the numerical models are used to study the strength behavior of

the composite by predicting the failure envelopes for thin and thick textile composites.

4.1 Thermally Induced Residual Microstresses

The thermal residual microstresses are induced in the yarn and matrix materials due
to the mismatch in their corresponding CTE’s. The difference between the composite curing
temperature and room temperature then serves as the driving force to create these
microstresses. Since composites designed for high temperature applications are fabricated
at higher temperatures, the residual microstresses become relevant in the strength
considerations of such composites. The residual microstresses in the vicinity of the
yarn-matrix interface are particularly important as they could lead to failure due to

debonding.

Determination of residual microstresses. Let T, be the difference between room
temperature and the composite fabrication temperature. Since the composite is stress free at
the fabrication temperature, which is above room temperature, T, is generally negative. The
residual microstresses in the yarn and the matrix are obtained by superposing the

microstresses due to the two load cases as explained below. In the first load case, the unit-cell
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is constrained from expanding by fixing the corner nodes of the unit-cell and enforcing zero
displacement difference between corresponding nodes on opposite faces of the unit-cell
(periodic displacement BC’s). A temperature difference T;, is applied to all elements in the
finite element model. This is exactly the same problem we solve for finding the
three-dimensional (continuum) CTE’s. The applied boundary conditions mean that all the
macrostrain components are equal to zero ( {eM} =0, 4TM = T)). Then the corresponding

macrostresses required to restrain the unit-cell expansion are given by:
[ = - [ClHaYT, (65)

In the second load case, deformations are applied so as to reverse the macrostresses
developed in the first load case. This can be accomplished by imposing the deformations
{eM} = {a€} T, and ATM=0. It can be noted that the macrostresses developed in the second
loading case, given by [C]{a¢}T, are equal and opposite to the macrostresses in Eqn. (65).
The microstresses from both load cases are superposed to obtain the residual stresses due to
free thermal expansion.

The same idea can be extended to finding the residual microstresses in the plate

model. Then the deformations to be applied in the first load case are { 88’ }=0, {#¥M} =0and

ATM = T,,; and the deformations in the second load case are {80 Y ={aP} T,, {xM}={BP}
T, and ATM = 0. The residual microstresses were computed for the plain-weave textile beam
at the Gaussian center of the elements in the unit-cell. The beam was assumed to be in the
x-z plane with unit-cells repeating in the x-direction. Figure 21 shows the thermal stress
contours for Oy, 0, and 7y;. The composite curing temperature was assumed to be 150°C

above room temperature.
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Figure 21.
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4.2 Strength Modeling of Textile Composites

There are many failure criteria or strength theories for unidirectional fiber
composites. This, for example, includes maximum stress theory, maximum strain theory and
Tsai-Hill theory (Agarwal and Broutman, 1990). Even though failure of a material is a very
complex phenomenon, engineering strength theories such as mentioned above have been
found to be useful in design. The interpretation of strength values obtained from such
theories are different for different materials. For example in metal matrix composites the
failure envelope obtained using the above theories will correspond to the initial yield surface
(Dvorak et al., 1973). In graphite/epoxy composites the failure theories can be used to predict
fiber or matrix failure. In the present study our intent is to explore the possibility of

developing such failure criteria for textile composites.

4.2.1 Determination of Composite Failure Envelope

Our approach is similar to that used by Dvorak et al. (1973). A state of homogeneous
deformation, corresponding to each of the six macrostrain components, are independently
applied to the unit-cell by imposing the boundary conditions explained in Section 2.1. For
each case, the various stress components are computed in the elements in the
unit-cell—typically at the element Gaussian integration points. These stresses will be
referred to as microstresses. Assuming linear elastic behavior, the microstresses can be
computed for any arbitrary combination of the macrostrain components. Since we know the
macroscale elasticity matrix, we can find a relation between microstresses at a point and any

arbitrary state of macrostress as:
(o} = (F] {o™} (66)

[F] can be considered as a matrix of influence coefficients, which is evaluated at the

integration points of all the elements in the unit-cell. We also assume that the failure behavior
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of the matrix material and the yarn is known. For instance, let the failure criterion of the
matrix be of the form [H] {0} matrix = 1. Then the failﬁre criterion for the composite is
obtained from Eqn. (66) as [H] [F] {oM} = 1. The same idea also applies for the yarn. The
textile composite is assumed to have failed if there is failure on the microscale in any one
of the constituent materials—either matrix or the yarn. By varying the macrostresses using
a numerical simulation, failure envelopes can be obtained for the idealized homogeneous
material (Fig. 22a). It might be noted that Eqn. (66) can be modified to include the thermal

residual stress field in the unit-cell as
(o} = [F] {o™} = (07T, (67)

where {07} is the matrix of thermal microstresses computed at the element integration point

for a unit temperature difference.

(2) (b) Ny

Figure 22. Composite failure envelopes.
(a) continuum failure envelope in the space of macrostresses;
(b) plate failure envelope in the space of force and moment resultants.




69

4.2.2 Effect of Stress Gradients on Strength

The strength analysis for a three-dimensional composite can be extended for thin
composites using the plate model. As mentioned in Section 2.2, the macrostresses will not
be homogeneous thorough the thickness in such composites. Then the composite failure will
be determined by the stress gradients through the thickness, represented by the averaged
force resultants (V) and moment resultants (M). The composite failure criterion for the f)late

model will be of the form:

[H][F]{ ,Z} =1 (68)

Thus the failure envelope of the composite will be in the six-dimensional space of the force
resultants and the moment resultants (Fig. 22b). The above procedure was demonstrated

using the beam model, for the case of a plain-weave textile composite.

Failure envelope for textile composite beam. For a textile composite beam, the

failure envelope is constructed in the space of the three force resultants P, M and V. The textile
composite beam is assumed to be in the xz-plane with unit-cells repeating in the x-direction.
The unit-cell is discretized with eight-node isoparametric plane strain finite elements. Three
linearly independent deformations, as explained in Section 2.3, are applied to the unit-cell:
(a) unit axial strain; (b) unit curvature such that transverse shear strain is zero; (c) unit
transverse shear strain. For each deformation, from the finite element results, the
MiCrostresses Oyy, 0z, and Ty, are computed at the Gaussian center of each element. The

microstresses in the i element for a combination of loads (deformations) are given by:

ok, eM
oLt = [A] {xM (69)
M

2% Yo
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where the each column of [A] corresponds to the microstresses for unit deformation. For

example, the first column of [A7] represents the three microstress components in the ith

element for unit 884 . We also know that

8M
0 P

xME = [S] {M} . (70)
34 \%

4

where [S] is the beam compliance matrix. From Eqns. (69) and (70) we arrive at an

Ugcx ' P
oLb = [F] {M} (71)
i \%

Xz

where [F] = [A’][S]. The composite is assumed to have failed if there is failure in any one

expression analogous to Eqn. (66):

of the finite elements in the unit-cell. Matrix failure is determined by either maximum
principal stress or von Mises criteria. Since the yarn is assumed to be transversely isotropic,
yarn failure is determined by either maximum strain theory for a unidirectional composite

or the Tsai-Wu criteria.

Beam Failure Envelope Results. The strength properties used for the constituent
materials in the beam are as follows:
Yarn: 01, 7=1725 MPa, 0y ©=1366 MPa, o77=42 MPa, 07=230 MPa, 1,7=95 MPa
Matrix: o1=70 MPa, 6¢=100 MPa
where the superscripts *T” and °C’ refer to the tensile and compressive strengths respectively.
The failure envelopes were developed using two different sets of failure criteria. In the first
case maximum principal stress criterion was used to determine the matrix failure and the
maximum strain theory for unidirectional fiber composite was used for the yarn. In the
second case von Mises criterion was used for the matrix and the Tsai-Wu criteria for the yarn.

Both structural (beam) and continuum failure envelopes were developed. As was explained
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earlier, in the beam model, periodic BC’s were imposed between corresponding nodes on
the left and right ends of the unit-cell. In the continuum model, the periodic BC’s were in
addition imposed between the top and bottom surfaces. The failure envelopes in Figures (23)
through (26) were obtained using the first set of failure criteria. Figures (23) and (24) depict
the structural failure envelope in the P-M space based on yarn and matrix failure
respectively. Figures (25) and (26) illustrate similar continuum failure envelopes in the space
of the macroscale normal stresses in the x- and z-directions. As expected, the envelope
reduced in size with increasing shear force resultant. If we assume that the beam is made of
a homogeneous but orthotropic material with properties as predicted by the continuum
model, then one can derive structural failure envelopes from the continuum failure envelopes
using simple beam theories. The derived structural failure envelopes are compared with that
obtained from direct micromechanical analyses in Figures (27) and (28). One can note that
the continuum failure criteria are very conservative for the case of a thin beam. Figures (29)
and (30) show similar comparisons for the second set of results obtained using the quadratic

failure criteria for the constituent materials.
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CHAPTER 5
ISSUES IN MICROMECHANICAL MODELING

The complex yarn architectures in textile composites make traditional finite element
modeling very difficult. Traditional finite element models assume that the material
properties are constant or vary smoothly within an element. In the context of textile
composites, it means that the yarn and matrix materials are modeled by separate elements,
with common nodes at the yarn-matrix interface. This is indeed preferable because the
stresses at the interface can be computed accurately. However meshing the interstitial matrix
region becomes time-consuming and difﬁcuit. This region which is essentially a collection
of multiply-connected matrix pockets, requires a very fine mesh to capture the pocket
geometry. Dasgupta et al. (1990) and Whitcomb (1991) presented detailed finite element
analyses of the unit-cell for plain-weave architectures. In this chapter, alternative finite
element modeling techniques (Marrey and Sankar, 1994) are discuésed, which are valid for
any yarn architecture. The methods were tested with simple two-dimensional examples, and
compared with the displacement fields using traditional finite elements. Some aspects of

finite element mesh generation, in the context of textile composites, are also discussed.

5.1 Finite Element Modeling of the Unit-Cell

Traditional finite elements use homogeneous elements, i.e., elements that are
comprised of only one material. Two methods to circumvent traditional finite element
modeling are described in the following section. The first uses incompatible elements, which
employs homogeneous elements for the yarn and matrix, though there is a node mismatch
at the yarn-matrix interface. The second method utilizes inhomogeneous elements to model

the unit-cell.
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5.1.1 Incompatible Elements

The following method is a modification of previously published work on
independently modeling substructures with finite elements (Ransom et al., 1993). The
matrix and each of the yarns are meshed independently with finite elements. In general, the
nodes on the surface of the yarns will not coincide with the matrix nodes on the yarn-matrix
interface. In fact, most textile composite unit-cells due to multidirectional reinforcements,
contain multiply-connected matrix pockets. These matrix regions require an extremely fine
mesh to capture their geometry, whereas the yarns can be modeled with a coarse mesh. This
method has therefore two advantages—the first being the relative ease of generating
independent meshes for the yarns and the matrix. Secondly, the effective degrees of freedom
in the numerical model are reduced, since the yarns are modeled with a coarse mesh.

Figure 31(a) shows an example of a rectangular unit-cell with an ellipsoidal
inclusion. The matrix mesh is shown in Fig. 31(b) and the inclusion mesh is shown in Fig.
31(c). The matrix degrees of freedom on the inclusion-matrix interface are denoted as g, ™,
the matrix degrees of freedom in the interior as g;"™ and the inclusion degrees of freedom are

denoted as g7, The total strain energy in the unit-cell is given by

U_'ll_m mJ KZIbKZ‘l q'bn
IR L5 |

1
+ 3000 — @R — q'RY — 4Ry

(72)

where KV is the finite element stiffness for the inclusion; and K™ 1is the stiffness for the matrix
material, which is divided into four sub-matrices. RY and R™ are the external load vectors in
the inclusion and matrix mesh respectively. The matrix degrees of freedom on the boundary

are eliminated using the transformation,
gy = Tqg (73)

where T is a transformation matrix. By substituting for g,™ in Eqn. (72) and minimizing the

strain energy with respect to g and g;™, we get the following relation:
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Figure 31. Example to illustrate incompatible elements.
(a) problem to be modeled; (b) matrix mesh; (c) inclusion mesh.

Equation (74) can be solved for ¢ and g;™, and g,™ can be recovered from Eqn. (73). The

displacement at any point in the unit-cell is obtained by identifying the inclusion or matrix
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element enclosing the point, and interpolating the nodal displacements of that element. By
repeating this procedure for several representative points, the displacement field within the
unit-cell is obtained.

The method was first tested by predicting the displacement field for the unit-cell of
aunidirectional composite subject to uniaxial tension. Due to symmetry of the unit-cell, only
one-quarter of the unit-cell was modeled. The boundary conditions imposed required the
edges of the unit-cell to remain straight after deformation (Fig. 32a). The initial mesh for
the problem is shown in Fig. 32(b). The node mismatch at the inclusion-matrix interface can
be observed in the figure. Eight-node isoparametric elements were used to model the fiber
and matrix—24 elements were used for the fiber and 98 elements for the matrix. The
deformed incompatible element configuration is shown in Fig. 32(c). The results were
compared with conventional finite element results by plotting the displacement fields for
both cases on a background 25x25 mesh (Fig. 32d). It was found that the incompatible
element displacement field was identical to that using traditional elements. Only one set of
displacements are visible in Fig. 32(d), because the displacement fields exactly overlapped
each other.

The procedure to determine the background mesh displacement field is illustrated in
Fig. 33. For a given point in the background mesh (Fig. 33a), the corresponding incompatible
element containing the point is determined (Fig. 33b). The displacement for the mesh point
is obtained as the interpolation of nodal displacements of the found incompatible element
(Fig. 33c). A similar procedure is followed to compute the background mesh displacements
using conventional elements. The method was also tested by modeling the transverse shear
of a unidirectional cpmposite (Fig. 34). In this case, one-half of the unit-cell was modeled
and the displacements are shown for a background 20x20 mesh. In both examples, it was
found that the displacement fields using incompatible elements and conventional elements
were identical. A discontinuity in strains in the vicinity of the fiber-matrix interface was

observed in both the examples.
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Figure 32. Unidirectional composite subjected to uniaxial tension.
(a) boundary conditions; (b) initial mesh using incompatible elements;
(c) deformed mesh; () deformed background mesh.
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Figure 33. Calculating displacement field for the background mesh.

(a) background mesh showing node whose displacements are to be
calculated; (b) incompatible element mesh; (c) matrix element
containing the background mesh node.
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Figure 34. Unidirectional composite subjected to transverse shear.
(a) boundary conditions; (b) initial mesh using incompatible elements;
(c) deformed mesh; (e) deformed background mesh.
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5.1.2 Inhomogeneous Elements (Averaged Gaussian Integration)

By inhomogeneous elements, we mean finite elements which are comprised of more
than one material. Inhomogeneous elements in micromechanical analyses were studied in
detail by Foye (1993). The advantage of using inhomogeneous elements is that mesh
generation is very simple. For instance a rectangular domain can be discretized into uniform
rectangular or triangular elements, without taking into consideration the constituent material
geometry. The stiffness matrix of inhomogeneous elements represent smeared properties of
the constituent phases determined by the numerical integration scheme. Thus the solution
will be approximate in the interface regions. Foye has developed a modified method to
evaluate the stiffness matrix of inhomogeneous elements called Replacement Elements,
which predict better stresses than conventional inhomogeneous elements. The following
details the procedure to use inhomogeneous elements for micromechanical analysis.

The unit-cell is divided into uniform rectangular hexahedral elements as shown in
Fig. 35. In general these elements will be inhomogeneous. The stiffness matrix (K¢) for an

inhomogeneous element is formulated as:

K¢ = J BTCB dve
Vt

| I

J[ -1

i=1j

1 1 1

+
j BTCB || dEdnd: (75)
-1

N

> WWW, BTCE7,5) BUI
1k=1
where V®is the domain of the element, B is the strain-displacement transformation matrix,
C is the elasticity matrix, N is the number of Gauss points used for integration, W is the
Gaussian integration weight factor and IJl is the determinant of the Jacobian. The material

property at each Gauss point (§,,0) is determined, and the corresponding elasticity matrix
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is used to perform the volume integration. The element stiffness matrix will thus represent

the averaged properties of the constituent materials in that element.

Matrix

(a)

(b)

(c)

Figure 35. Discretizing a domain using inhomogeneous finite elements.
(a) problem to be modeled; (b) inhomogeneous finite element mesh;
(c) inhomogeneous finite element.
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The approach was implemented by writing a code to identify the material property
of an arbitrary Gauss point. The inclusion geometfy was defined by a coarse finite element
mesh. If the Gauss point fell within any of the inclusion elements—the material property of
the point was identified as that of inclusion. Otherwise the material property of the point was
identified as matrix. The algorithm to determine the element belonging to the Gauss point
is explained in the following section. The results obtained by using the approach to the
uniaxial tension of a unidirectional composite are shown in Fig. 36(a). The displacements
were in agreement with those obtained using homogeneous elements (Fig. 36b).

The problem with inhomogeneous elements is that they cannot represent the jump
in strains that can occur at the yarn-matrix interface. In fact there are three strain components
that can be discontinuous at the interface, but the corresponding stresses must be continuous.
Such a behavior cannot be represented by inhomogeneous elements which assume a
continuous strain fields within the element. This problem can be resolved by decomposing
the displacement field into‘two parts: a displacement field q; that produces a strain field
continuous everywhere in the unit-cell, and the second one g, that has a strain discontinuity
at the yarn-matrix interface. The field g, can be assumed to be such that the displacements
are identically equal to zero everywhere in the matrix and at the interface, and exist only in
the interior of the inclusions. Thus one can use inhomogeneous elements for solving the first
set of displacements. The second set of displacements exists only in the inclusions, and they
can be solved by discretizing only the inclusion. However the issue is determining the
decomposition g=g;+g>. The condition for the decomposition is that the jump in interfacial
stresses should be equal and opposite in the two problems, since the interfacial stresses are

continuous in the given problem.
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Figure 36. Displacement field for uniaxial tension of a unidirectional composite.
(a) inhomogeneous elements; (b) homogeneous elements.
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Point location algorithm. In the context of a textile composite problem, the material
property code of a point is obtained as follows. The yarn (inclusion) volume is discretized
into eight-node hexahedral isoparametric finite elements as shown in Fig. 37. The finite
elements are shaped as triangular prisms (a face of the hexahedron is collapsed to an edge).
An iterative algorithm is used to determine whether the point (whose material property is
to be determined) is contained within the volume of a given element. If not, the procedure
is repeated for all the elements in the yarn. If the point does not belong to any of the yarns,
it is designated as a matrix point. If the point belongs to a yarn element, the local yarn

direction is computed as the direction of the line along the length of the prismatic element.

Figure 37. Finite element mesh for a yarn.

The algorithm to determine if a given point is contained within the volume of a finite
element is explained below. The procedure is explained for the two-dimensional case, and

can be easily extended to a three-dimensional problem.
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(b)

Figure 38. Finite element in:
(a) xy—coordinate system (b) natural coordinate system.

Let the point, whose material property is to be determined, be P with coordinates (x,y). It
is required to determine whether the point P is contained within the area of the eight-node
isoparametric element as shown in Fig. 38(a). The element is mapped into its natural
coordinate system (Fig. 38b). Similarly, point P is mapped to P*in the element natural
coordinate system. The element in the (§,%) natural coordinate system is a square of length
two units with edges parallel to the £n-axes, such that the center of the square O * coincides
with the natural coordinate origin. This means that we need to find whether the point P*is
contained within the given square. This is possible if we know the natural coordinates of
point P*. However there does not exist a transformation from the xy-coordinate system to

the natural coordinate system. The reverse transformation exists as given below:
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8
*Em) = D NEm x,

i=1 .

8 (76)
YEm = > NE y;
i=1

where N; denotes the shape function, and (x;,y; ) represents the xy-coordinates for the i* node.
Therefore we use an iterative procedure to determine the natural coordinates of P*,

We substitute £=0 and #=0 in Eqn. (76), and determine the xy-coordinates of point
O (corresponding to point O™ in the natural coordinate system). The point O will not, in
general, coincide with P. Then the error, i.e., the difference in the x- and y-coordinates
between points P and O is calculated as Ax and Ay respectively. Also since the x- and

y-coordinates are functions of the natural coordinates, Ax and Ay may be expressed as:

dx = B8 + 2y

o0& on
77)
_ % dy (
Ay = agdé' + 617‘477
Equation (77) may be rewritten in matrix form as follows:
ax ox
Ax o5 on| A&
Ay[ = |22 oy[ 14 78
9E on
Ax A€
{Ay} = WEmI” { A,,} (79)
where [J(§7)] is the Jacobian at (&7). The Jacobian is computed using the following
equation:
9E 9E T RE | |*2 )2
= Co 80
N LA VR B &
on om - oy X Vg

Knowing the Jacobian, A§ and An can be evaluated from Eqn. (79) as:
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¥l A
{An} = VEmIT {A;} (81)

The parameters A& and A are the corrections to be applied to the coordinates of point o*
to determine the coordinates of point P As a check, the natural coordinates of point P*is
then transformed to its xy-coordinates using Eqn. (76), and compared with the given
coordinates of point P. The procedure is repeated if the difference in coordinates is above

a prescribed tolerance.

5.1.3 Periodic Boundary Conditions

The unit-cell is the smallest volume element in the composite which is representative
of the yarn architecture. The yarn architecture in the composite is generally periddic, and the
unit-cell contains one repeat of the yarn pattern. Thus the composite structure can be formed
by assembling the unit-cell in all three dimensions. When the composite is subject to any
arbitrary load, the microstresses and displacement gradients will be continuous across the
faces of the unit-cell. Continuity of microstresses requires that the tractions be equal and
opposite at corresponding points on opposite faces of the unit-cell. Also the displacements

between corresponding nodes on opposite faces of the unit-cell will differ only by a constant.

Multipoint constraint elements. The periodic boundary conditions (traction and
displacement boundary conditions) can be implemented using multipoint constraint
elements, which are based on the principle of Lagrange multipliers. The finite element

formulation with multipoint constraint elements will be of the form:

56 - 18

where {1} is the matrix of Lagrange multipliers (Cook et al., 1989). However this method
requires large storage for the stiffness matrix, due to the degrees of freedom contributed by
the constraint elements (4;). Also the resulting stiffness matrix will not be positive definite,

and the matrix bandwidth will be very large.
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Figure 39. Two-dimensional example to illustrate the use of transformation equations.
(a) initial finite element mesh of unit-cell showing some of the master
and slave degrees of freedom; (b) deformed mesh.

Transformation equations. The following section explains an alternative method to
enforce the periodic boundary conditions. The method is explained for the two-dimensional
case, and can easily be extended for the three-dimensional problem. Consider a finite
element mesh of a unit-cell (Fig. 39a), where the periodic boundary conditions are to be
implemented between the left and right edges, and the top and bottom edges. Assume that
each node has only one degree of freedom (d.o.f). The nodal degrees of freedom on the left
and bottom edges (except the prescribed d.o.f’s) are designated as “master” degrees of
freedom g,,, and those on the right and top edges as slave” degrees of freedom ¢;. The nodal
degrees of freedom in the mesh interior are also classified as master degrees of freedom.
There may arise a situation where the d.o.f for the corner node at x;=0, x, = 0 is not
prescribed. In that case, it is designated as a master node with two slave nodes, whose
coordinates are given by (x;=0, x; = L) and (x;=Lj, x = 0). Thus a master d.o.f may have
zero, one or two slave d.o.f’s depending on its coordinates.

The slave d.o.f’s are transformed to master d.o.f’s by the transformation:



92

qs = Agqm + Ag; (83)

where A is a transformation matrix such that A §= o) @y and d denotes the Kronecker delta.

”¢” is an integer function such that for the i slave d.o.f, ¢(i) is the corresponding master

d.o.f. Equation (83) can be rewritten as,

@) = > Aylgm); + gy,
j
= Zac(,’)j(Qm)j + (AQs)i (84)

J

(4qy);is the displacement difference to be imposed between the i* slave d.o.f (g s); and its

corresponding master d.o.f, (). The strain energy in the unit-cell is evaluated as,
T
U = l dm Kmm Kms dm
T 2|9 Kon Kg ds (85)
+ AT(gs = Agm — 49 — ¢IR; — qhRn

where 4 is the matrix of Lagrange multipliers; R; and R, represent the external force vectors
for the slave and master d.o.f’s. By minimizing the strain energy with respect to the variables

gm, s and A we get:

Knm Kms — A am Rom
Kogn Kg 1 s = R (86)
-A 1 o |4 4g;

Eliminating g; and A from Eqn. (86), we arrive at the expression :
K'qn = R' (87
where

K' = [Kym + ATK A + ATK,, + KAl

R* = Ry + AR, — [Kns + ATK Mg, (88)
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Equation (87) can be solved for gy,; and g; recovered from Eqn. (83). Thus the number of
unknowns in the linear equation solver are reduced, and also the resulting stiffness matrix

(K™ is positive-definite.

5.2 Mesh Generation

Currently approximate methods such as averaged Gaussian integration, Selective
Averaging Method and Isostrain Method are popular because of their ease of computation
and requirement of minimum computer storage and time. However the advancements in
computer hardware and computational technology will make it possible to use a large
number of degrees of freedom for micromechanical analysis. Then there will be a need for
mesh generation techniques for creating homogeneous elements in a unit-cell. In the
following we describe two methods for discretizing the unit-cell with homogeneous

elements.

5.2.1 Node Migration Method

The unit-cell is meshed with tetrahedral solid elements in an arbitrary fashion. This
will be called the primitive mesh. The elements are identified as homogeneous or
inhomogeneous. Then the nodes of the inhomogeneous elements are moved to the interface
by using an heuristic algorithm. In each inhomogeneous element, the node closest ton the
interface is allowed to migrate to the interface first. After each cycle, some elements will
transform into homogeneous elements. Then the process is repeated until all the elements
become homogeneous. The mesh thus generated is called the intermediate mesh.

The intermediate mesh will have some elements distorted due to node migration.
This distortion can be removed by subjecting the mesh to an annealing process, by which
the distortions concentrated near the interfaces are distributed among other elements also.
An example of this method is depicted in Fig. 40. The purpose here i‘s to discretize a square

unit-cell containing two circular inclusions. The figure shows the initial mesh containing

¢-2.
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uniform square elements, the intermediate mesh of homogeneous elements and the annealed

mesh.
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Figure 40. Example problem for node migration method.
(a) primitive mesh; (b) intermediate mesh; (c) annealed mesh.
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5.2.2 Modified Node Migration Method

In this method an initial mesh is created as in the previous method. The elements are
divided into three groups: homogeneous matrix elements, homogeneous yarn elements and
inhomogeneous elements which contain both matrix and yarn. Then the inhomogeneous
elements are redesignated as matrix elements, thus leaving only two kinds of elements. We
will call this as the intermediate mesh. Thus the finite element representation of the yarn will
be smaller than the actual yarn, i.e., the yarn mesh will be fully contained within the actual
yarn. Then the nodes on the yarn-matrix interface in the intermediate mesh are allowed to
migrate to the nearest point on the actual yarn-matrix interface. As before a
three-dimensional finite element program with fictitious material properties is used in this
step to obtain an annealed mesh. An example of the final mesh for a square unit-cell with

two inclusions in the shape of a quarter-circle is shown in Fig. 41.

Figure 41. Annealed mesh using modified node migration method.




CHAPTER 6
CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

The previous chapters presented some of the aspects involved in the modeling of
textile structural composites. Micromechanical analyses were developed to predict the
three-dimensional elastic constants and CTE’s for textile composite materials. The effect of |
stress gradients in thin textile composites was highlighted, and consequently, an independent
micromechanical analysis was developed for such composites. The issues involved in
modeling a thin textile composite were demonstrated by first modeling the composite as a
beam and then as a plate. Two codes called uTEy-10 and uTEY-20 were developed in
FORTRAN 77, which implemented the finite element procedure presented in Chapter 2, and
the SAM procedure presented in Chapter 3 respectively. The predicted macroscale
thermo-elastic constants compared very well with existing models for textile composite
materials.

The finite element analysis and SAM procedures assume that the unit-cell of the
composite is shaped as a rectangular hexahedron. Both analyses can be easily modified for
other unit-cell geometries. For example, in the finite element procedure, the relations for the
periodic boundary conditions will change based on the unit-cell geometry. However the
assumption, that the unit-cell is rectangular, limited the textile composite examples for
which the above codes can be implemented. For instance, the unit-cell for a braided
composite is hexahedral with the included angle between the edges equal to the braid angle.
The braid angle, in general, will not be equal to a right angle. Thus the effective composite
properties could be computed only for woven architectures, where the unit-cell is a

rectangular hexahedron.

96
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A considerable amount of time was invested in developing mesh generation
algorithms and alternative finite element procedures, in the context of modeling textile
composites. Some of these ideas are presented in Chapter 5. The mesh generation algorithms
such as the node migration method were very effective for two-dimensional examples.
However for the three-dimensional case, some of the elements near the interface collapsed
to create degenerate and skewed elements. Further, extremely small tetrahedral elements
were required to capture the interstitial matrix geometry. Computer storage and CPU time
limitations made the use of such a finite element mesh impractical. Initially multipoint
constraint elements were used to impose periodic boundary conditions in uTEy-10. To
reduce computer storage, the transformation method (for periodic boundary conditions) and
the skyline solver (Bathe, 1982) were incorporated in the finite element code. Further
reduction in computer storage can be realized by using sparse matrix solvers instead of the
skyline solver.

The averaged Gaussian integration technique was used to compute the
inhomogeneous element stiffness matrix inu TEy-10. The inhomogeneous element averages
the properties of the constituent materials in the element, and assumes that the strain
distribution is continuous within the element. Consequently, the inhomogeneous element
cannot capture the discontinuity in strains across the yarn-matrix interface. Thus the
corresponding microstresses computed in the vicinity of the interface will be inaccurate. The
accuracy of the microstresses may be improved by refining the (inhomogeneous element)
mesh, but that would greatly increase the degrees of freedom in the numerical model. This
emphasizes the need for effective finite element preprocessing codes for meshing the
unit-cell of the textile composite with homogenous elements. It will also be useful to
interface the finite element results with suitable graphics software. This will enable the user
to get a feel for the problem by directly visualizing the unit-cell deformed configurations,

and the microstress/microstrain distributions within the unit-cell.
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Chapter 4 presented failure envelope results for a plain-weave textile beam. Implicit
to the procedure for determining the failure envelope, was the assumption that microscopic
failure in the unit-cell translated to macroscopic failure of the composite. The procedure is
simplistic and conservative, but yet of use to a structural designer. More work remains to be
done in obtaining results for failure envelopes using the strength models for textile
composite continuum and for a composite plate, as explained in Chapter 4. An issue which
this study, due to time limitations, does not address is parametric analyses to study the effect
of changing constituent material properties and fiber volume fraction on composite
properties. Both the finite element analysis and SAM can be easily extended for other
macroscopic composite properties such as thermal conductivities, electro-magnetic

properties and so on.
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1. Introduction

This manual describes the codes uTEyx—10 and uTEy—20, which are based on
micromechanical analysis procedures to predict the overall (macroscopic) thermo—elastic properties
for a textile composite. The analysis assumes that the textile composite material is comprised of
repeating unit—cells or representative volume elements (RVE’s). In other words, the unit—cell can
be considered as a building block, which by assembling in all three dimensions would form the
parent textile composite material as shown in Fig. 1(a). On the microscale (comparable to the
dimensions of the unit—cell), the unit—cell consists of the reinforcing yarns, and the interstitial matrix
material (Fig. 1b). However, on the macroscale (comparable to the dimensions of the structural
component), the composite is assumed to be homogeneous. The object of the micromechanical
analysis is to determine the macroscopic stiffness coefficients and coefficients of thermal expansion
(CTE’s) of the textile composite from the yarn and matrix material properties, and the yarn geometry
within the unit—cell.
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Figure 1. (a) Textile composite continuum; (b) unit—cell; (c) textile composite plate
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1.1 Constitutive Models

The micromechanical analysis assumes that the unit—cells span the composite in all the three
dimensions. This assumption is true in the case of a thick textile composite. However, there are many
structural applications in which thin composites are used. In such cases, there will be fewer
unit—cells in the thickness direction (Fig. 1c). Then the composite structure is modeled as a plate to
determine its corresponding thermo-elastic coefficients. Consequently, we have two constitutive
models — for thick (three—dimensional) textile composites and textile composite plates.

1.1.1 3-D Textile Composite

Consider a 3-D textile composite with unit—cells repeating in all three dimensions. Let the
unit—cell be a rectangular parallelepiped with edges parallel to the coordinate axes x7, x2 and x3. On
the macroscale the composite is assumed to be homogeneous and orthotropic and the composite
behavior is characterized by the following constitutive relation:

. R 3
(011] Cyy Cip Ci3 Cuu Cis Cyg (£11]) i
022 Cp Cun Cu G Cy ¢ K
33 Ciz Gy Gy Cy €33 a3
% Ts3 (= symm. Cu Cys Cy { ﬁ}’23 [~ %a% AT ¢ @)
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where {0} and {¢} are the macroscale stresses and strains respectively; 4T is a uniform temperature
difference throughout the unit—cell; {a®} and [C] are the macroscale CTE’s and orthotropic elasticity
matrix to be determined.

1.1.2 Textile Composite Plate

The textile composite plate is assumed to be in the xy-plane with unit—cells repeating in the
x and y directions. The plate is assumed to be homogeneous on the macroscale and given by the
constitutive relation:

’Nxﬁ -Au Ap A B, Bpn BIJ (€0 agT ]
N, A Ap Ay By By By €50 a’f
Ny Ajg Ay Ags  Bis Bas Bes Va0 G
ﬁ L = { 4 - ﬁ \AT & 2)
M, By, By; By D,y Dy, Dy %y ﬂf
M, By, By By Dy Dy Dy ::’ By
M, Bis By Bes Dy Dy Dy Yy B
L L - L L J

where €;9, ¥ip and x; are the midplane axial strain, shear strain and curvature; af.’ and ﬂ{’ are the plate

thermal expansion and thermal bending coefficients; N; and M; are the axial force and bending
moment resultants respectively in the homogeneous plate. [A], [B] and [D] are the plate extensional
stiffness, coupling stiffness and bending stiffness matrices respectively.

1.2 Brief Background of uTEy—10 and uTEyx—20

As was mentioned earlier, uTEx—10 and uTEy—20 are based on micromechanical
algorithms to predict the effective stiffness and thermal coefficients for a textile composite. The
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algorithms are briefly explained in this section. The concepts behind uTEy—10 are explained in
detail in references 1-6. Reference 7 summarizes references 1-6, and also explains uTEy—20’s
computational procedure.

1.2.1 uTEy—10 Theory:

uTEy—10, pronounced as microtech-10, is a finite—element code to predict the textile
composite properties. In fact, this code can be used for any composite in which the inclusions follow
a repeated pattern — such as a unidirectional composite with fibers in a square array. Both the 3-D
(continuum) properties as well as the plate properties can be computed.

(b)

Figure 2. (a) unit—cell discretized into uniform brick elements (b) eight—node brick element

The unit—cell is assumed to be a rectangular hexahedron and divided into regular—sized
eight-node brick elements as shown in Figure 2. The number of divisions along the 1—, 2— and
3—axes are specified by the user. Periodic displacement and traction boundary conditions are
imposed between corresponding nodes on opposite faces of the unit—cell. The periodic boundary
conditions (BC’s) ensure that the displacements and stresses are continuous across the faces of the
unit—cell. It should be remembered that the elements are in general, inhomogeneous, i.e., consist of
more than one material. The element stiffness matrix is obtained as the averaged stiffness of the
different materials in the element. The numerical procedure implemented in uTEY— 10 to compute
the element stiffness matrix is explained in appendix A.1.

To determine the stiffness coefficients, periodic displacement BC’s are applied such that only
one of the macrostrain components in Eqn. (1) is nonzero. For example, to impose unit €71, the face
x1=L is pulled by a distance of L in the 1—direction relative to its opposite face given by x;=0.
Simultaneously, the difference in displacements in the 2— and 3—directions for the above two faces;
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and the displacement difference in all three directions for the remaining two pairs of faces are set
to zero. From the finite element results, the macrostresses required to create such a deformation state
are computed. Substituting the macrostresses in Eqn. (1) and knowing that €17 is the only nonzero
strain component, the stiffness coefficients corresponding to the first column of [C] are obtained.
A similar procedure is followed to compute the remaining five columns of [C], and the composite
CTE’s.

The microstresses for the six deformation cases, and the thermal residual microstresses for
a given temperature difference (between composite curing temperature and room temperature) can
also be predicted. However, the computed microstresses will be inaccurate in the vicinity of the
yarn—matrix interface.

1.2.2 uTEy—20 Theory:

The code uTEyx—20 implements the Selective Averaging Method (SAM) to estimate the
composite thermo-mechanical coefficients. SAM is an approximate analytical method which is
faster and easier to implement than uTEy—10. The unit—cell is discretized into slices on the
mesoscale as shown in Fig. 3. The direction in which the unit—cell is sliced is dependent on the state
of loading. For normal loads (first three load cases) the slices are perpendicular to the direction of
loading. In the case of shear loading (fourth, fifth and sixth load cases), the slices are parallel to the
plane of shear. The slices are in turn sub—divided into elements on the microscale. The slice stiffness
and then the composite (macroscale) stiffness are determined by utilizing a combination of isostress
and isostrain assumptions on the mesolevel and macrolevel respectively. In other words, the
composite stiffness coefficients are obtained by selectively averaging the stiffness and compliance
coefficients of the elements and the slices. It should be noted that the periodic BC’s are not enforced
in SAM. For further explanation the user should refer to reference 7.

(a) (b) (©

Figure 3. Hierarchy of discretization for a unit—cell to implement SAM: (a) unit—cell; (b) slice;
(c) element
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2. Preparing Input Files

This section of the manual describes the procedure to prepare input files for both uTEx—10
and uTEy —20. The input files are identical for both the codes, except that post-processing options
are available in u TEy —10. In both codes, the X YZ~coordinate system is used for the unit—cell, and
the 123~coordinate system for the yarns. The XYZ—coordinate system is also referred to as the
global coordinate system (GCS), and the 123—coordinate system as the local coordinate system
(LCS).

2.1 Inputfor uTEy—10:

Essentially, there are two input files to uTEy—10 — textile.inp and yarn.inp. The file
textile.inp reads the unit—cell geometry, the yarn and matrix material properties, and the user options.
Whereas file yarn.inp reads the yarn/s architecture within the unit—cell. The procedures to create the
. above two input files are described in the following sub-sections. The various steps to create the
input are stated along with a short explanation. After all the steps are discussed, examples of
complete input files are documented.

2.1.1 Steps to create textile.inp :

The below stated steps (with the exception of the first step) consist of a character line, which
may be followed by numeric data. The character line may be entered completely in upper—case or
completely in lower—case. The numeric data is represented by integer/real variables. The text to be
actually typed in the files are preceded and followed by dashed-lines, to differentiate them from the
rest of the text.

1. The first step is to enter the comment line/s. Each line can be up to 80 characters long, and
multiple lines (up to 100) are allowed. A blank line should be used to denote the end of the comment
lines, for eg.,

textile.inp - plain weave textile composite plate example
Thermal residual micro stresses are to be computed

2. Enter the material properties of the yarns (each yarn can have different properties). This is
done by assigning a number to every yarn. Then the data is input as:

yarn
NYR

1,EL,ET,GLT, PNULT, PNUTS, ALPHAL, ALPHAT
2,EL,ET,GLT, PNULT, PNUTS, ALPHAL, ALPHAT

NYR, EL, ET, GLT, PNULT, PNUTS, ALPHAL, ALPHAT

NYR is an integer representing the number of yarns. Since the yarns are assumed to be
transversely isotropic, five elastic-stiffness properties and two thermal expansion coefficients are
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required for each yarn. In the coordinate system shown in Fig. 4, the L—axis corresponds to the axis
of the yarn. The T- and S—axes are mutuvally perpendicular axes on the transverse plane, which is
also the plane of isotropy. EL and ET are the elastic moduli of the yarn in the longitudinal and
transverse directions respectively. GLT is the shear modulus in the L-T plane; PNULT is the major
Poissonratio in the L-T plane, PNUTS is the Poisson ratio in the T-S plane. ALPHAL and ALPHAT
are the yarn CTE’s in the longitudinal direction and transverse directions respectively.

Figure 4. Cross—section of yarn showing the longitudinal (L) and transverse (T and S)
directions.T-S plane is the plane of isotropy.

3. Enter the matrix (isotropic) properties.

matrix
EM, PNUM, ALPHAM

EM and PNUM are the elastic modulus and the Poisson ratio of the matrix material; ALPHAM is
the coefficient of thermal expansion of the matrix.

4, Define the bounds of the unit—cell as follows:

uc—-domain
LX,LY,LZ

where LX, LY and LZ are the lengths of the unit—cell in the three dimensions.

5. Specify the unit—cell type, and the number of elements that the unit—cell is to be discretized.
If the composite 3—D continuum properties are to be determined, then the input would be of the form:

solid
NX,NY, N2z
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On the other hand, if the plate properties are to be computed , then the input would be of the form:

plate
NX,NY,NZ

NX, NY and NZ are the number of divisions along the the three dimensions. Consequently, the total
number of elements generated would be NXxNYxNZ. Both ’solid’ and ’plate’ options cannot be
used simultaneously.

6. This step is optional. If the following line is typed,

forces

- then the average stresses in the case of ’solid’ option, or the average force and moment resultants
in the case of ’plate’ option, acting on each face of the unit—cell are computed and printed in file
textile.out. This option should be used only if required, since it increases the code run—time.

7. This step is also optional. If the microstresses within the unit—cell are to be computed then
the following line is entered:

stresses

Then the microstresses are computed at the Gaussian center of each element, for the six deformation
cases and printed out in six different files, namely, stressl.dat, stress2.dat, stress3.dat, stress4.dat,
stress5.dat and stress6.dat (Appendix A.2). If the thermal residual microstresses are also to be
computed, then the input would be

tstresses
DELTAT

where DELTAT is the difference between the room temperature and composite fabrication
temperature (in most cases DELTAT is negative). Then, in addition to the above six files, the file
tsress.dat will be generated, containing the thermal microstresses.

The commands to compute the microstrains are analogous to the above two commands, and
are given by:

strains
or

tstrains
DELTAT

Then the files which would contain the microstrain data are strainl.dat, strain2.dat, strain3.dat,
straind.dat, strain5.dat, strain6.dat and tstrain.dat (Appendix A.2).
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Note: Only one of the above four commands should be entered in textile.inp.

8. This is the final step, which indicates the end of the input file.

finish

The order of steps 5, 6 and 7 may be interchanged. However, the user is advised to follow
the order of the listed steps. Steps 1-5 and Step 8 are sufficient for computing the composite
thermo—mechanical coefficients. Steps 6 and 7 should only be used when additional post—processing
information is required, i.e, average forces and microstress/microstrain data.

2.1.2 textile.inp example
- Example of textile.inp for a plain-weave textile composite.

yvarn

4
1,144.8d9,11.73d49,5.52d9,0.23,0.30,-0.3244-6,14.0d-6
2,159.8d49,10.9049,6.40d49,0.38,0.30,0.0450d4-6,20.2d-6
3,144.8d9,11.73d9,5.52d9,0.23,0.30,-0.324d-6,14.0d-6
4,159.849,10.90d9,6.4049,0.38,0.30,0.04504-6,20.2d-6
matrix

3.45d9,0.35d0,40.0d4-6

uc-domain

2.822d-3,2.822d4-3,0.2557d4-3

solid

10,10,7

forces

tstrains

-150.0d0

finish

In the above example, the unit—cell contains four yarns. Yarns 1 and 3 have identical material
properties and so do yarns 2 and 4. Since the ’solid’ option is used, the continuum properties for the
composite are computed and printed into file textile.out. The average stresses on the faces of the
unit—cell are also printed in file fextile.out. The microstrains for the six deformation cases and the
thermal microstrains (for a temperature difference of —150 units) are also determined.

2.1.3 Steps to create yarn.inp:

The yarn geometry information is entered in file yarn.inp. It is assumed that the end—faces
of the yarn are planar which coincide with the faces of the unit—cell. The yarns are modeled by
defining the end cross—section, and by sweeping this cross—section along the yarn axial direction (or
yarn path). Listed below are the steps required to create yarn.inp.

1. Enter the comment line/s. A blank line should follow the last comment line, for eg.,
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yarn.inp - plain weave textile composite plate example.

2. Enter the number of yarns as shown below.
HEADERLINE
NYR

The HEADERLINE can be any string of characters (up to 80 characters), or even a blank line. It
is essentially a dummy line, and is not used in the code. NYR stands for the total number of yarns,
and this integer must be the same as the total number of yarns entered in textile.inp. An example of
 this step would be:

number of yarns
10

3. Enter the number of points representing the cross—section of yarn 1 as:

HEADERLINE
NPPTS

where NPPTS denotes the number of points. For example, eight points are chosen in Fig. 5(a) to
model the yarn cross—section. Hence the input may be entered as:

number of polygon points in yarn 1
8

4. Enter the (x3, X2) coordinates for all the points representing the cross—section of yarn 1. This
is done by choosing any point as the starting point and numbering all the points (from 1 to NPPTS)
along the counter—clockwise direction (denoted by circled numbers in Fig. 5a). Then the (x3, X3)
coordinates are entered for every point in ascending order, as shown below:

HEADERLINE
X31,X21
X32,X22
X33,X23

X3NPPTS, X2NPPTS
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The first digit after X’ refers to the coordinate axes number and the second to the point number. For
example X32,X22 would be the (x3, X2) coordinates of point 2 on the cross—section. The yarn
cross—section will therefore be approximated as a NPPTS—sided polygon as shown in Figure 5(b).

5. Enter the number of points chosen to represent the axial path of yarn 1. In the illustrated
example 11 points are chosen to model the yarn path (Fig. 5c). The information is typed as:

HEADERLINE
NAPTS

where NAPTS is the total number of axial points.

(b)

() (d)

[\

Figure 5. (a) yarn cross—section in the 2-3 plane showing the points chosen to represent the
yarn cross—section; (b) approximated polygonal cross—section; (c) yarn path in the 1-2 plane;
(d) approximated yarn path.

6. Input the (x1, X7) coordinates for the axial points as follows (it is assumed that the yarn path
lies on the 1-2 plane) . First, number the points successively along the yarn direction (Fig. 5c). The
starting point should coincide with the origin. Then enter the data as:
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HEADERLINE
X11,Xx21
X12,X22

X1NAPTS, X2NAPTS

The first digit after *X” refers to the coordinate axes number and the second to the axial point number.
For example X12,X22 are the (xy, X2) coordinates of axial point numbered 2. Like in Step 4 the data
should be entered in ascending order such that the last line corresponds to the coordinates for point
- NAPTS.

7. Enter the transformation matrix for yarn 1 to transform the coordinates from the yarn 123
coordinate system (LCS) to the global XYZ coordinate system (GCS). The transformation is given

by the following equation:
X TnTiTs| (x
Yi = |TyTpTy| 1% 3
Z T3 T3 T3] *3

where [T] is the 3x3 transformation matrix.

Z

Figure 6. Sketch to illustrate the transformation of coordinates from the yarn coordinate
system to the global cooridnate system
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Consider Fig. 6, in which the yarn coordinate system has been translated so that its origin
coinicides with the global coordinate system. The components of the transformation matrix are
determined by using the following equation:

X, x1) (X,x9) (X,x3)

7] = |(Bx) Xx) (Fxy) @)
(Z,x1) (Z,x3) (Z,x3)

where (X;, ;) denotes the cosine of the angle between the axis X; in the GCS and the jth axis in the
LCS. Figure 7 shows an example of a unit-cell with one yarn. Only the end—faces of the yarn are
shown. The 1-2 plane which is assumed to contain the yarn path (not shown) is parallel to the Y-Z
plane. From Eqn. (4) the transformation matrix for the yarn in the example would be:
0 0 -1
[T] = [O 1 O]
1 0 O

The transformation matrix is entered as:

HEADERLINE

T11,T12,T13
T21,T22,T23
T31,T32,T33

~ It

Z

Figure 7. Example to explain the transformation of coordinates from yarn coordinate system
to global coordinate system
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8. Enter the global coordinates (xg,yg.zg) of the first axial point of yarn 1, i.e., the global
coordinates corresponding to the origin of the 123 coordinate system. This is typed as:

HEADERLINE
XG, YG, Z2G

9. Repeat Steps 3-8 for the remaining yarns in the order of the yarn number.
2.1.4 yarn.inp example

The following example is for a unit—cell with two yarns. The unit—cell is of unit length in
all three dimensions. The path of the first yarn is assumed to be straight and parallel to the z—axis
(Fig. 7). Therefore only two axial points are required to represent the path of the first yarn.

'yarn.inp: Example of a composite with a two yarns. The first varn
is a straight yarn along z-direction with circular cross-section.

number of yarns

2

number of points to represent cross-section of yarn 1
12

X3,X2 of polygon points

0.437,0

0.37845,0.2185

0.2185,0.37845

0,0.437

-0.2185,0.37845

~-0.37845,0.2185

-0.437,0

-0.37845,~0.2185

-0.2185,-0.37845

0,-0.437

0.2185,-0.37845

0.37845,-0.2185

number of axial points to represent yarn path of varn 1
2

X1,X2 of axial points

0,0

1,0

transformation matrix for yarn 1

0,0,-1

0,1,0

1,0,0

global coordinates of first axial point for yarn 1
0.5,0.5,0

number of points to represent cross-section of vyarn 2
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4

X3,X2 of polygon points

0.4,0

0,0.4

-0.4,0

0,-0.4

number of axial points to represent yarn path of yarn 2
5

X1,X2 of axial points

0,0

0.25,0.41

0.50,0

0.75,-0.41

1,0

transformation matrix for yarn 2

1,0,0

0,1,0

0,0,1

global coordinates of first axial point for varn 2
0,0.5,0.5

2.2 Input for uTEy—20:

The input files to uTEy—20 are sam.inp and yarn.inp (Appendix A.3). File sam.inp is
similar in structure to that of textile.inp. The user should follow Steps 1-5 and Step 8 in sub-section
2.1.1 to create sam.inp. Steps 6 and 7, which are post—processing options are not available for
UTEy—20. The steps to generate yarn.inp are described in sub-section 2.2.3.
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3. Compiling the Codes

BothuTEy—10 and uTEy —20 are coded in FORTRAN. Double precision is used for all the
real variables. The user might require to compile the codes depending on the size of the problem
he/she needs to run. For instance, consider the case where the dimension statements for the number
of divisions of the unit—cell in uTEy —10 were set to, say, seven in all three directions. If the user
wanted to run a case with more than seven elements in any one of the directions, he/she will have
to recompile uTEy—10. Or conversely, the user might want to reduce the dimensions for a smaller
problem, so as to reduce the executable size. In the following two sub—sections, the procedures to
compile the codes are explained.

3.1 Compiling uTEy—10

The file paraml10.var contains PARAMETER statements which assign integer values to
different parameters (or symbolic names). The parameters are in turn used to dimension the arrays
in uTEy—10. So the values assigned to the parameters are to be changed, to change the dimension
of the arrays in uTEy—10.

Actually, only seven parameters in paramliQ.var need to be changed, and the remaining
parameters are automatically modified. The section of paramlO.var with the seven parameter
statements is given below (for an example):

[e; FILE PARAM10.VAR
Cm— The variables in the following SEVEN parameter statements are to be
Cmm e changed to change the array sizes in the source code microtechlO.

parameter (NXDIM = 15)
parameter (NYDIM = 15)
parameter (NZDIM = 10)

parameter (NSTIFF = 8341113)
parameter (KYARN = 10)

parameter (KAXIAL = 100)
parameter (KPOLY = 100)

parameter (NPOSX = NXDIM + 1)
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The parameters NXDIM, NYDIM and NZDIM denote the number of divisions used to
discretize the unit—cell along the X—, Y~ and Z—directions. Fo example, if 17 elements are to be used
along the X—direction, then the value assigned to NXDIM must be changed to 17 (or greater than
17). KYARN stands for the number of yarns in the unit—cell; KAXIAL represents the maximum
number of axial points used for a yarn; and KPOLY for the maximum number of cross—section points
used for a yarn. For instance, if 6 axial points are used to model one yarn and 8 axial points for

another, then KAXIAL must be greater than or equal to 8.

The parameter NSTIFF assigns a value to the dimension of the global stiffness array in the
source code. The global stiffness is stored as a one—dimensional array, using the skyline technique.
In this technique, all the stiffness elements below the skyline8 are stored in the one—dimensional
array. The question arises, as to what value is to be assigned to NSTIFF. This is found using a
two—step process. First enter the right values for the remaining six parameter statements, and assign
a small number, say one, to NSTIFF. Then create the input files, textile.inp and yarn.inp, compile

* and run the code. The following message should show up on the terminal, namely,

total storage required for stiffness = NRSTIFF
stiffness matrix is under-dimensioned
set NSTIFF in file paramlO.var to required dimension

where NRSTIFF is the exact storage required for the stiffness array. This integer value should be
assigned to NSTIFF in param10.var and the code should be recompiled. The stiffness storage will
depend on the number of elements used and whether the ’plate’ or ’solid’ options were chosen. The
values to be assigned to the stiffness parameter for some discretizations (NXxNYxXNZ) of the

unit—cell are listed below.

NX NY NZ NSTIFF (solid) NSTIFF (plate)
5 5 5 49173 39948
6 6 6 126201 94773
7 7 7 278001 : 197298
8 8 8 549051 373371
9 9 9 998733 656832
10 10 10 1703493 1090593
11 11 11 2759001 1727718
12 12 12 4282311 2632503
13 13 13 6414021 3881556
14 14 14 9320433 5564877

For the above discretizations, the first step of the compilation procedure may be bypassed, i.e, the
correct NSTIFF parameter can be assigned rightaway. ‘An additional listing of stiffness parameters
for discretizations ranging from 8-12 elements in the three directions are given in Appendix A.4.
3.2 Compiling uTEx-20
The parameters in file param20.var should be changed to alter the dimensions of arrays in
code uTEy—20. Given below is a partial listing of param20.var for an example.
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c FILE PARAM20.VAR

C——m—= The variables in the following SIX parameter statements are to be

Cm————= changed to change the array sizes in the source code microtech20.

parameter (NXDIM = 50)
parameter (NYDIM = 50)
parameter (NZDIM = 50)
parameter (KYARN = 10)

parameter (KAXIAL = 100)
parameter (KPOLY = 100}

parameter (NELEMS = NXDIM*NYDIM*NZDIM)

Here NXDIM, NYDIM and NZDIM represent the dimensions for the number of divisions of the
unit—cell in the X—,Y— and Z—directions (Fig. 3). The definitions for KYARN, KAXIAL and
KPOLY are the same as that in the previous sub—section.



In this section, a brief explanation is given to understand the computed data for both the
codes. Most of the data printed out in the output files is self-explanatory. Only the information which
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4. Interpreting Ouput Files

may not be obvious to the user is presented here.
UTEy—10 Output

As shown in Appendix A.2, the output files are textile.out and yarn.dat. In addition, if the
‘stress’ or ’strain’ options are used, then the stress/strain data are printed out in
stressl.dat,...,stress6.dat or strainl.dat,...,strain6.dat (if the ’tstress’ or ’tstrain’ option were used

4.1

instead, then an additional file tstress.dat or tstrain.dat is created).

4.1.1 Interpreting textile.out

Consider the following partial listing of file textile.out:

plain-weave textile composite

No. of Yarns = 4
Yarn No. el eT gLT pnu LT _ pnu TT

1 0.14480E+12 0.11730E+11 O0.55200E+10 0.23000E+00 0.30000E+00

2 0.14480E+12 0.11730E+11 0.55200E+10 0.23000E+00 0.30000E+00

3 0.14480E+12 0.11730E+11] 0.55200E+10 0.23000E+00 0.30000E+00

4 0.14480E+12 0.11730E+11 0.55200E+10 0.23000E+00 0.30000E+00
Yarn No. alpha L alpha T

1 -.32400E-06 0.14000E-04

2 -.32400E-06 0.14000E-04

3 -.32400E-06 0.14000E-04

4 -.32400E-06 0.14000E-04
Matrix Properties

E pnu alpha
0.34500E+10 0.35000E+00 0.40000E-04
X v z

unit-cell length 0.28220E-02 0.28220E-02 0.25570E-03
divisions of SOLID unit-cell 15 15 10
volume fraction of matrix... 0.14000
volume fraction of yarn... 1 0.21506
volume fraction of varn... 2 0.21506
volume fraction of varn... 3 0.21500
volume fraction of varn... 4 0.21489
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The volume fractions are computed by determining the material property code for all the element
Gauss points. Eight Gauss points are used per element, which means that the total number of
representative points will be eight times the number of elements. So the computed volume fraction
indicates the fraction of the representative points whose material code corresponds to a particular
material constituent.

If the *forces’ option were included in fextile.inp, then the averaged stresses/force resultants
are printed in fextile.out. The nodal forces are computed at the end—faces of the unit—cell, and the
nodal forces are averaged over the face to give the macroscale stresses or force resultants. For
example, if the *solid” option is used along with *forces’ option then the macroscale 0y is computed
as:

=L ¥ Fm
Om =TT Z F(L,,Y,2) ®)

where F® is the nodal force in the x—direction at the nth node, and Z denotes summation over all

nodes on the face X=L,. On the other hand, for the *plate’ option, the force resultant Ny and moment
resultant My on the face X=L, are computed as:

M=i2@@ﬂ@
n
: ©
M, = L—yZng‘)(Lx, Y,2)
n

Listed below are the macrostress data for an example problem (when ’solid’ and ’forces’ options
were used):

Results for SOLID MODEL obtained by AVERAGING FORCES

Load case = 1

Sigma XX Tau XY Tau XZ
Negative yz-plane 0.57691E+11 -.51828E+01 -.19312E+04
Positive yz-plane 0.57691E+11 ~.51828E+01 -.19312E+04

Tau XY Sigma YY Tau YZ
Negative xz-plane -.51854E+01 0.84979E+10 -.59790E+04
Positive xz-plane -.51803E+01 0.84979E+10 -.59790E+04

Tau X2 Tau YZ Sigma Z2Z
Negative xy-plane -.19312E+04 -.59790E+04 0.47023E+10
Positive xy-plane -.19312E+04 -.59790E+04 0.47023E+10

Load case = 2
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Stiffness Matrix is

0.57691E+11 .84979E+10 0.47023E+10 .59790E+04 .19312E+04 .51827E+01
.84979E+10 .57674E+11 0.47020E+10 .11463E+05 .28005E+04 .42448E+01
.47023E+10 .47020E+10 O0.11591E+11 .52929E+01 .10377E+04 .93648E+00
.59790E+04 .11463E+05 -.52930E+01 .43305E+10 .46505E+01 .56016E+01
.19312E+04 .28005E+04 -.10377E+04 .46506E+01 .43308E+10 .36642E+02
.51828E+01 .42448E+01 -~.93648E+00 .56016E+01 .36642E+02 .47838E+10
Ex = 0.55005E+11
Ey = 0.54988E+11
Ez = 0.10923E+11
PNU yz = 0.35772E+00
PNU xz = 0.35774E+00

PNU xy = 0.11818E+00

Gyz = 0.43305E+10
Gxz = 0.43308E+10
Gxy = 0.47838E+10

3-D Coefficients of Thermal Expansion are

Alpha X = 0.15570E-05
Alpha Y = 0.15580E-05
Alpha Z = 0.22755E-04
Alpha YZ = 0.15322E-10
Alpha XZ = 0.80251E-11
Alpha XY = 0.11073E-13

The load case number refers to the state of deformation in the unit—cell. Load cases 1 to 6 refer to
the state of deformation to determine the corresponding column of the plate/continuum stiffness
matrix, and load case 7 refers to the state of thermal loading (to determine CTE’s). The data listed
below the load case numbers are the averaged stress resultants. This means that the sign of the
stresses on the negative planes (planes with outward normals in the negative X-— Y- and
Z—directions) are reversed. The same applies to the force and moment resultants in case the 'plate’
option is used. These resultants obtained by averaging the nodal forces are used to construct the
effective stiffness matrix ~ column by column. This stiffness matrix in theory has to be symmetric.
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In practice, the finite element scheme and round-off errors may lead to unsymmetry of the stiffness
matrix. Therefore, the effective compliance matrix is averaged, and the 3-D elastic constants are
predicted by comparing the compliance coefficients with that of an orthotropic medium (this step
is skipped for the ’plate’ model and the [A], [B], [D] coefficients are listed directly).

The macroscopic stresses can also be obtained by averaging the corresponding microstress
component over the unit—cell volume. For instance, the macroscopic gy, can be computed as:

On =3 j oYX, Y, Z) dV )
14

where V is the volume of the unit—cell and o indicates the microstress component. In fact,
irrespective of the options used , the effective stiffness matrix is always computed by averaging the

microstresses (in addition, the stiffness is computed by averaging the nodal forces if the forces’
~ option is used). This stiffness matrix is listed at the bottom of textile.out as shown below:

Results for SOLID MODEL obtained by AVERAGING MICROSTRESSES

3-D Continuum Stiffness Matrix is

0.57691E+11 0.84979E+10 0.47023E+10 -.59790E+04 -.19312E+04 -.51828E+01

.84979E+10 0.57674E+11 .47020E+10 ~-.11463E+05 -.28005E+04 -.42448E+01
.47023E+10 0.47020E+10 .11591E+11 .52930E+01 .10377E+04 .93648E+00
.59790E+04 -.11463E+05 .52930E+01 .43305E+10 .46505E+01 .56016E+01
.19312E+04 -.28005E+04 .10377E+04 .46505E+01 .43308E+10 .36642E+02
.51828E+01 ~-.42448E+01 .93648E+00 .56016E+01 .36642E+02 .47838E+10
Ex = 0.55005E+11
Ey = 0.54988E+11
Ez = 0.10923E+11
PNU yz = 0.35772E+00
PNU x2z = 0.35774E+00
PNU xy = 0.11818E+00
Gyz = 0.43305E+10
Gxz = 0.43308E+10
Gxy = 0.47838E+10

3-D Coefficients of Thermal Expansion are
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Alpha X = 0.15570E-05
Alpha Y = 0.15580E-05
Alpha Z = 0.22755E-04
Alpha YZ = 0.15322E-10
Alpha XZ = 0.80251E-11
Alpha XY = 0.11073E-13

The method by which the elastic constants are calculated from the stiffness matrix is identical to the
method explained in the previous paragraph.

4.1.2 Interpreting stress data

If *stress’, tstress’, 'strain’ or "tstrain’ options are used, the microstresses will be printed out
in different files as shown in Table 1. The first column states the deformation for which the
microstresses are obtained.

Table 1. List of files containing the microstresses for various options.

’stress’ option | ’tstress’ option | ’strain’ option | ’tstrain’ option

solid: g4,=1 stressl.dat stressl.dat strainl.dat strainl.dat
plate: e4,=1

solid: Eyy=1 stress2.dat stress2.dat strain2.dat strain2.dat
plate: eyy=1

solid: &£,,=1 stress3.dat stress3.dat strain3.dat strain3.dat
plate: yyy=1

solid: vy,=1 stress4.dat stress4.dat strain4.dat straind.dat
plate: %yx=1

solid: yx,=1 stress5.dat stress5.dat strain5.dat strain5.dat
plate: nyy=1

solid: yxy=1 stress6.dat stress6.dat strain6.dat strain6.dat
plate: %yy=1

solid: thermal stresses —_ tstress.dat — tstrain.dat
plate: thermal stresses
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The following is a example listing of the file stress5.dat when the ’plate’ option was used:

stress5.dat
micro stresses computed for deformation kappa-yy = 1
The stresses are in the LTS-coordinate system for the yarns and

the XYZ-coordinate system for the matrix.

X v z Yyarn no. sigma LL sigma TT sigma SS
tau TS tau LS tau LT

.47033E-03 0.47033E-03 0.42617E-04 .85259E+07 -.16183E+06 0.90249E+05

.18250E+04 -.50603E+05 -.86194E+05

.14110E-02 0.47033E-03 0.42617E-04 .21669E+06 -.47759E+06 -—.14582E+06

.14835E+05 0.10784E+04 0.33190E+05

.23517E-02 0.47033E-03 0.42617E-04 .11232E+06 -.16823E+07 -.14407E+06

.20189E+06 0.99910E+04 0.57055E+05

.47033E-03 0.14110E-02 0.42617E-04 .98276E+05 -.24395E+06 -.33342E+05

.71882E+04 0.82057E+03 0.32047E+05

.14110E-02 0.14110E-02 0.42617E-04 .81038E+05 -.21669E+06 —.21813E+05

.42131E+03 -.46568E+01 -.64133E+05

.23517E-02 0.23517E-02 0.21308E-03 0.11231E+06 0.16826E+07 0.14431E+06

.20124E+06 0.99994E+04 0.56985E+05

Maximum tensile/compressive stress in each constituent material
yvarn no. sigma LL sigma TT sigma SS tau TS tau LS tau LT

0 0.21679E+06 0.47773E+06 0.14596E+06 0.14843E+05 0.10784E+04 0.33190E+05
-.21680E+06 -.47773E+06 -.14597E+06 -.14835E+05 -.10958E+04 -.64133E+05
1 0.15747E+06 0.16823E+07 0.14408E+06 0.13981E+06 0.10974E+05 0.27012E+06
~.15750E+06 —.16823E+07 -.14407E+06 -.20189E+06 —.10984E+05 —-.15633E+06
2 0.15755E+06 0.16826E+07 0.14431E+06 0.20124E+06 0.10984E+05 0.59024E+05
~.15752E+06 -.16826E+07 -.14432E+06 —.24088E+05 —.10993E+05 0.00000E+00
3 0.85229E+07 0.16186E+06 0.90249E+05 0.47178E+05 0.49995E+05 0.13948E+06
~.85259E+07 -.16183E+06 ~.89957E+05 0.00000E+00 -.50603E+05 -.86194E+05
4 0.85259E+07 0.16182E+06 0.89961E+05 0.00000E+00 0.49997E+05 0.00000E+00
—.85229E+07 -.16185E+06 -.90253E+05 -.18414E+04 -.50605E+05 -.86195E+05
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The microstresses/strains are computed at the Gaussian center of all the elements. The first section
of the file contains the microstresses at all the element—center points. The point location is identified
by the X, Y and Z columns and the material property at the point is given by the *yarn no.” column.
A yarn number of zero implies that the point is contained in the matrix material. The stresses/strains
for a yarn point are listed in the yarn LTS coordinate system (Fig. 4). However, the stresses/strains
for a matrix point are listed in the global XYZ coordinate system. Therefore *sigma LI’ for a yarn
point would mean the longitudinal stress component; and the normal stress component along the
x—direction for a matrix point. The last section of the file lists the maximum tensile and compressive
stresses/strains in the different constituent materials.

4.1.3 Interpreting yarn.dat

The element stiffness matrix is computed as the averaged stiffness of the constituent
materials in that element (Appendix A.1). For this purpose, it is required to determine the material
property of the element Gauss points. The material property of a Gauss point is obtained in the
following fashion. The yarn volume is discretized into eight—node hexahedral isoparametric finite
elements as shown in Fig. 7. The polygon points (used to reperesent the yarn cross—section in section
2.1.3) are the nodes on the circumference of the yarn. For a given cross—section, the center node
coordinates are obtained by averaging the circumferential nodal coordinates. The finite elements are
shaped as triangular prisms (a face of the hexahedron is collapsed to an edge). The length of the prism
is governed by the spacing of the axial points, which represent the yarn path. An iterative algorithm
is used to determine whether the point (whose material property is to be determined) is contained
within the volume of a given element. If not, the procedure is repeated for all the elements in the
yarn. If the point does not belong to any of the yarns, it is designated as a matrix point. If the point
belongs to a yarn element, the local yarn direction is computed as the direction of the line along the
length of the prismatic element.

Figure 7. Finite element mesh for a yarn



127

File yarn.dat lists the finite element mesh information for all the yarns. The data is given as
the node number and the corresponding nodal coordinates; and then the element number and the
connectivity for the element. The information is repeated for all the yarns in serial order. The
information is self-explanatory (since the data is printed out with appropriate headers), and hence
is not explained in this manual. The user may transfer the data to a suitable graphics software
package for visualizing the finite element mesh of the yarns.

Caution: The yarn finite element mesh should not be confused with the finite element mesh of the
unit—cell. The only purpose for generating the yarn mesh is to determine the material property code
at a given point (X,Y,Z).

4.2 uTEy—20 Output

The output files for u TEy —20 are sam.out and yarn.dat (see Appendix A.3). The format of
. sam.out is similar to that of textile.out; and yarn.dat is identical to that explained in section 4.1.3.
Since the algorithm used to implement 4 TEy —20 is based on an approximate analysis, the resulting
stiffness matrix will not be symmetric. For the continuum problem (when ’solid’ option is used),
the effective elastic constants are obtained from the stiffness matrix using the following two
methods. In the first method the stiffness matrix is symmetrized, inverted to give the compliance
matrix from which the elastic constants are predicted. In the second method, the (unsymmetric)
stiffness matrix is inverted and the resulting compliance matrix is symmetrized. The results from
both methods are printed in sam.out.
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Appendix

A.1  Computation of Inhomogenous Element Stiffness

The element stiffness matrix (K¢) in uTEy—10 is formulated as:

K¢ = j BTcB dve
Ve
+
f BTCB \I\ dEdndt (8)

N N N
= >3 www, BTCEn8) B

where V® is the domain of the element, B is the strain—displacement transformation matrix, C is the
elasticity matrix, N is the number of Gauss points used for integration, W is the Gaussian integration
weight factor and IJ is the determinant of the Jacobian. The material property at each Gauss point
(:m,8) is determined, and the corresponding elasticity matrix is used to perform the volume
integration. The element stiffness matrix thus represents the averaged properties of the constituent
materials in that element.
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A.2 File Flow Chart for uTEx—10

INPUT
uTEy—10
(microtech10)
OUTPUT
Y
textile.out yarn.dat
’stress’ or ’strain’ option |’tstress’ or ’tstrain’ option

Y

stressl.dat,..., stress6.dat, tstress.dat
or
strainl.dat,..., strainé.dat, tstrain.dat

stressl.dat,..., stress6.dat
or
strainl.dat,..., strainé6.dat
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File Flow Chart for uTEy—20
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INPUT H H
UTEy—20
(microtech20)
OUTPUT
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A.4 Stiffness Parameters in param10.var

Required value for the global stiffness parameter NSTIFF in file paramI0.var. NX, NY and NZ
denote the number of elements chosen to discretize the unit—cell in the three directions.

NX NY NZ NSTIFF
SOLID PLATE
8 8 8 549051 373371
8 8 9 631587 419043
8 8 10 714123 464715
8 8 11 796659 510387
8 8 12 879195 556059
8 9 8 686883 463512
8 9 9 790320 520293
8 9 10 893757 577074
8 9 11 997194 633855
8 9 12 1100631 690636
8 10 8 839691 562869
8 10 9 966333 631911
8 10 10 1092975 700953
8 10 11 1219617 769995
8 10 12 1346259 839037
8 11 8 1007475 671442
8 11 9 1159626 753897
8 11 10 1311777 836352
8 11 11 1463928 918807
8 11 12 1616079 1001262
8 12 8 1190235 789231
8 12 9 1370199 886251
8 12 10 1550163 983271
8 12 11 1730127 1080291
8 12 12 1910091 1177311
9 8 8 693714 471234
9 8 9 798015 528879
9 8 10 902316 586524
9 8 11 1006617 644169
9 8 12 1110918 701814
9 9 8 867999 585147
9 9 9 998733 656832
9 9 10 1129467 728517
9 9 11 1260201 800202
9 9 12 13380935 871887
9 10 8 1061238 710724
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NX NY NZ NSTIFF
SOLID PLATE
9 10 9 1221321 797907
9 10 10 1381404 885090
9 10 11 1541487 972273
9 10 12 1701570 1059456
9 11 8 1273431 847965
9 11 9 1465779 952104
9 11 10 1658127 1056243
9 11 11 1850475 1160382
9 11 12 2042823 1264521
9 12 8 1504578 996870
9 12 9 1732107 1119423
9 12 10 1959636 1241976
9 12 11 2187165 1364529
9 12 12 2414694 1487082
10 8 8 855225 580419
10 8 9 983829 651423
10 8 10 1112433 722427
10 8 11 1241037 793431
10 8 12 1369641 864435
10 9 8 1070229 720876
10 9 9 1231446 805193
10 9 10 1392663 897510
10 9 11 1553880 985827
10 9 12 1715097 1074144
10 10 8 1308633 875733
10 10 9 1506063 983163
10 10 10 1703493 1090593
10 10 11 1900923 1198023
10 10 12 2098353 1305453
10 11 8 1570437 1044990
10 11 9 1807680 1173333
10 11 10 2044923 1301676
10 11 11 2282166 1430019
10 11 12 2519409 1558362
10 12 8 1855641 1228647
10 12 9 2136297 1379703
10 12 10 2416953 1530759
10 12 11 2697609 1681815
10 12 12 2978265 1832871
11 8 8 1033584 700926
11 8 9 1189029 786675
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NX NY NZ NSTIFF
SOLID PLATE

11 8 10 1344474 872424
11 8 11 1499919 958173
11 8 12 1655364 1043922
11 9 8 1293573 870699
11 9 9 1488459 977376
11 9 10 1683345 1084053
11 9 11 1878231 1190730
11 9 12 2073117 1297407
11 10 8 1581876 1057896
11 10 9 1820559 1187679
11 10 10 2059242 1317462
11 10 11 2297925 1447245
11 10 12 2536608 1577028
11 11 8 1898493 1262517
11 11 9 2185329 1417584
11 11 10 2472165 1572651
11 11 11 2759001 1727718
11 11 12 3045837 1882785
11 12 8 2243424 1484562
11 12 9 2582769 1667091
11 12 10 2922114 1849620
11 12 11 3261459 2032149
11 12 12 3600804 2214678
12 8 8 1228791 832755
12 8 9 1413615 934635
12 8 10 1598439 1036515
12 8 11 1783263 1138395
12 8 12 1968087 1240275
12 9 8 1538031 1034616
12 9 9 1769772 1161381
12 9 10 2001513 1288146
12 9 11 2233254 1414911
12 9 12 2464995 1541676
12 10 8 1880967 1257213
12 10 9 2164809 1411455
12 10 10 2448651 1565697
12 10 11 2732493 1719939
12 10 12 3016335 1874181
12 11 8 2257599 1500546
12 11 9 2598726 1684857
12 11 10 2939853 1869168
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NX NY NZ NSTIFF
SOLID PLATE

12 11 11 3280980 2053479
12 11 12 3622107 2237790
12 12 8 2667927 1764615
12 12 9 3071523 1981587
12 12 10 3475119 2198559
12 12 11 3878715 2415531
12 12 12 4282311 2632503
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